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Abstract

Nematodes are keystone actors of soil, freshwater and marine ecosystems, but the complex-

ity of morphological identification has limited broad-scale monitoring of nematode biodiver-

sity. DNA metabarcoding is increasingly used to assess nematode diversity but requires

universal primers with high taxonomic coverage and high taxonomic resolution. Several prim-

ers have been proposed for the metabarcoding of nematode diversity, many of which target

the 18S rRNA gene. In silico analyses have a great potential to assess key parameters of

primers, including taxonomic coverage, resolution and specificity. Based on a recently-avail-

able reference database, we tested in silico the performance of fourteen commonly used and

one newly optimized primer for nematode metabarcoding. Most primers showed very good

coverage, amplifying most of the sequences in the reference database, while four markers

showed limited coverage. All primers showed good taxonomic resolution. Resolution was

particularly good if the aim was the identification of higher-level taxa, such as genera or fami-

lies. Overall, species-level resolution was higher for primers amplifying long fragments. None

of the primers was highly specific for nematodes as, despite some variation, they all amplified

a large number of other eukaryotes. Differences in performance across primers highlight the

complexity of the choice of markers appropriate for the metabarcoding of nematodes, which

depends on a trade-off between taxonomic resolution and the length of amplified fragments.

Our in silico analyses provide new insights for the identification of the most appropriate prim-

ers, depending on the study goals and the origin of DNA samples. This represents an essen-

tial step to design and optimize metabarcoding studies assessing nematode diversity.

Introduction

Nematodes are probably the most abundant animals on Earth, and are a crucial component of

soil, freshwater and marine ecosystems [1–3]. Despite their importance, the complexity and

labor of morphological identification has long limited broad-scale analyses of nematode biodi-

versity [4, 5]. The biodiversity of nematodes is estimated to be 1–10 million species, but less
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than 30,000 species have been described using morphology [6]. Recent advances in DNA

metabarcoding have fostered the study of nematode biodiversity from a range of environ-

ments, highlighting their impressive diversity and the multiple key roles they play [2, 3, 7–12].

The identification of appropriate primers is a fundamental step of all DNA metabarcoding

analyses [13, 14]. Several features are extremely important for the selection of primers. First,

primers must have a low number of mismatches with the sequences of the target group [high

taxonomic coverage; 15–18]. Second, primers should amplify highly variable regions to enable

the identification of target taxa at a high taxonomic level [high resolution; 16, 17]. Third, short

amplicons are generally favored, in order to reduce the cost of sequencing. Although recent

advances in sequencing technologies now allow to sequence longer fragments with the same

budget [19], the use of primers amplifying short fragments is relevant when working with envi-

ronmental and ancient DNA, as it is often degraded and consists of short sequences [14, 20–

23]. Finally, primers that only amplify the target taxon are frequently preferred (i.e. primers

with high specificitity), because non-specific amplification can reduce the detection of target

taxa, particularly if they show limited abundance [14, 17, 24, 25].

In silico approaches are extremely useful to assess key features of primers, including the

number of mismatches with the target sequences (a key determinant of taxonomic coverage)

and the potential taxonomic resolution [17]. In silico tests allow cheap and rapid comparisons

of a very large number of primers and often provide a good estimate of the actual performance

of primers across various taxa, that can later be confirmed by in vitro assays on real-world sam-

ples [11, 17, 26–29]. Accurate in silico assessments of primers for DNA metabarcoding require

the availability of extensive, high-quality reference databases over which primers can be tested

[17, 28]. The recent publication of a curated 18S rRNA database of nematode sequences

[18S-NemaBase; 10] poses the basis for such assessments.

In this study, we built upon the 18S-NemaBase to compare the performance of 15 primers

proposed for the metabarcoding of nematodes (Table 1). Using in silico PCR, we 1) assessed

whether the selected primers are able to amplify a large proportion of nematode taxa (cover-

age), 2) tested the taxonomic resolution of primers and evaluated whether there is a trade-off

between marker length and taxonomic resolution and 3) tested primer specificity, i.e., assessed

whether they only amplify nematodes, or also amplify a broad range of other organisms. Our

results help to evaluate the appropriateness of different primers for different aims, ranging

from the analysis of potentially degraded environmental DNA (eDNA) to whole-organism

community DNA [30].

Methods

Primer selection

All 15 primers selected for our analyses target the 18S rDNA region of nematodes (Table 1,

Fig 1). Among these primers, 13 were selected because they have been identified by a previous

review as the primers more commonly used in nematode metabarcoding [10]. One additional

primer, Euka02 [31] is often used for metabarcoding of eukaryotic eDNA and it has been sug-

gested to provide a good estimate of nematode diversity [8, 12, 31–33]. Furthermore, we devel-

oped a new primer pair (Nema02; see Table 1) by optimizing primer pair F548_A / R1912

from ref. [11]. More specifically, we performed in silico PCRs on the public sequence database

GenBank v249 with the ecoPCR program [17] to evaluate Nematoda and non-Nematoda vari-

ability at each position of the sequences matching the F548_A and R1912 primers, and in a

10-base interval in 5’ and 3’ of these sequences. The objective was to fine-tune the primer

sequences to maximize non-Nematoda variability while minimizing Nematoda variability in

primer-matching sequences, especially in 3’, in order to increase specificity. Taxonomic
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resolution of the associated marker was evaluated using the ecostaxspecificity program of the

OBITools package [34]. Compatibility of annealing temperatures and absence of problematic

primer dimers or hairpins were checked using OligoCalc [http://biotools.nubic.northwestern.

edu/OligoCalc.html; 35] and the OligoAnalyzer Tool (https://eu.idtdna.com/pages/tools/

oligoanalyzer?returnurl=%2Fcalc%2Fanalyzer), respectively.

In silico PCR

The availability of high-quality, curated databases is pivotal to test the performance of meta-

barcoding primers. We based our analyses on the 18S-NemaBase [10], which represents the

Table 1. List of primer pairs tested in silico, forward and reverse sequences of primers and the expected minimum and maximum lengths (bp) of the amplicons

used in the ecoPCR program.

PRIMER Forward sequence Reverse sequence min—max amplicon

length (bp)

Reference

1391f- EukBr GTACACACCGCCCGTC TGATCCTTCTGCAGGTTCACCTAC 50–250 [41, 42, 72]

1813F—2646R CTGCGTGAGAGGTGAAAT GCTACCTTGTTACGACTTTT 500–1000 [44]

18SILVOmidF—

18SILVOmidR

CAAGTCTGGTGCCAGCAG GAGTCTCGCTCGTTATCGG 500–1000 [48]

3NDf—1132rmod GGCAAGTCTGGTGCCAG TCCGTCAATTYCTTTAAGT 300–700 [51]

EcoF—EcoR GGTTAAAAMGYTCGTAGTTG TGGTGGTGCCCTTCCGTCA 300–700 [48]

Ek-NSF573—Ek-NSR951 CGCGGTAATTCCAGCTCCA TTGGYRAATGCTTTCGC 200–500 [73]

Euka02 TTTGTCTGSTTRATTSCG CACAGACCTGTTATTGC 30–400 [31]

F_1183 –R_1631 AATTTGACTCAACACGGG TACAAAGGGCAGGGACG 300–600 [74, 75]

FO4—R22 GCTTGTCTCAAAGATTAAGCC GCCTGCTGCCTTCCTTGGA 200–500 [40]

MMSF—MMSR GGTGCCAGCAGCCGCGGTA CTTTAAGTTTCAGCTTTGC 300–700 [49]

Nema02 AAGTCTGGTGCCAGCAGC GTTTACGGTYAGAACTAGGG 325–801 This study, modified from Kawanobe

et al. [11]

NemF—18Sr2b GGGGAAGTATGGTTGCAAA TACAAAGGGCAGGGACGTAAT 300–700 [4, 5]

NemFopt—18Sr2bopt GGGGWAGTATGGTTGCAAA TGTGTACAAAKGRCAGGGAC 300–700 [48]

NF1—18Sr2b GGTGGTGCATGGCCGTTCTT
AGTT

TACAAAGGGCAGGGACGTAAT 200–500 [4, 5]

SSU_F04—SSU_R22 GCTTGTCTCAAAGATTAAGCC CCTGCTGCCTTCCTTGGA 200–500 [43]

https://doi.org/10.1371/journal.pone.0298905.t001

Fig 1. Location of primers tested for nematode metabarcoding within the 18S rDNA gene. Primers were aligned with the Caenorhabditis
elegans 18S rDNA gene (GenBank accession number: AY268117). Redrawn on the basis of ref. [10].

https://doi.org/10.1371/journal.pone.0298905.g001
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most complete and high-quality available reference database of nematode 18S rRNA. The orig-

inal 18S-NemaBase includes 5231 sequences identified at family level or better, representing

214 families and 2734 species [10].

The performance of primers was tested using the ecoPCR program [17]. EcoPCR allows in
silico assessment of amplification of a sequence on the basis of its match with a selected primer

pair in a region of a specified length [17]. The sequence is selected from a given reference data-

base. To work, the program requires the reference database in the ecoPCR format. Thus, we

converted the 18S-NemaBase from the fasta to the ecoPCR format using the obiconvert com-

mand of the OBITools command suite [34]. The original 18S-NemaBase database consisted of

5231 sequences. However, 283 sequences (i.e. 5,4%) were excluded because they showed prob-

lems during the conversion from the fasta to the ecoPCR format (268 sequences) or because

they were assigned to non-nematode taxa in 18S-NemaBase (15 sequences). Thus, we based

our analyses on a total of 4948 sequences.

For in silico PCR, we allowed a maximum of 3 mismatches between each primer and the

sequences in the database. For each primer pair, the length of amplified fragments was selected

based on the literature (Table 1).

Running ecoPCR on the curated 18S-NemaBase allowed us to calculate two measures of

primer performance:

• Taxonomic coverage, as the percentage of amplified sequences within the reference

database;

• Resolution, i.e. the ability of markers to distinguish between closely-related taxa.

Taxonomic resolution was calculated using the procedure detailed in ref. [36]. First, all the

sequences obtained in each ecoPCR were compared among them to produce a list of unique

metabarcodes. We then obtained the list of taxa associated to each unique metabarcodes. Tax-

onomic resolution was tested at three levels: species, genus and family. We assessed if, for each

unique metabarcodes and taxonomic level, all the amplified taxa belong to the same taxon.

Let’s assume, for instance, that multiple species within one genus share the same metabarcode.

This particular metabarcode shows a genus-level and a family-level resolution but not a spe-

cies-level resolution. The average taxonomic resolution of markers was then calculated as the

proportion of unique metabarcodes that have a species-level, genus-level and family-level reso-

lution [36].

We used a linear regression to test whether there is a positive relationship between taxo-

nomic resolution and the log-transformed average length of the amplified fragments. This

analysis was run at the species-level resolution because all the primers showed excellent resolu-

tion at the genus- and family level (see Results).

Furthermore, we assessed the specificity of the tested primers using the whole GenBank

database (version 249) instead of the 18S-NemaBase as reference database in the ecoPCR pro-

gram. This time, we only retained one sequence per species, to avoid biases due to the overrep-

resentation of model species (e.g. Caenorhabditis elegans for nematodes). Then, specificity was

measured as the percentage of nematodes amplified over non-target organisms [17]. Primers

showing high specificity are in principle preferable because they have a higher probability of

detecting target taxa, including rare species [14, 17, 28, 37, 38].

Finally, we used primer sequence logos (weblogos) to further assess the conservation of

primers both in nematodes and in non-target taxa [14, 39]. In weblogos, we graphically repre-

sented the pattern of primer conservation, by retrieving the match of the forward and reverse

primers against GenBank sequences, based on the results of the ecoPCR run over GenBank

v249. Logos were built as stacks of symbols (A, C, G, T), with one stack for each position in the
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primer sequence. The height of each stack corresponds to the nucleotide conservation at each

position, measured in bits and ranging from 0 (same probability for the four nucleotides) to 2

(perfect conservation of the position) [39]. Like specificity analyses (see above), weblogo analy-

ses were run after randomly selecting only one amplicon per species, to avoid bias due to the

overrepresentation of model species in GenBank. Weblogos were built using the ggseqlogo R

package [39].

Results

Taxonomic coverage

The taxonomic coverage (proportion of amplified sequences compared to the 18S-NemaBase

database) was highly variable across primers. The majority of primers showed very good to

excellent coverage, amplifying >90% of sequences in the reference database, while four prim-

ers showed a limited coverage (Table 2, Fig 2). The three primers with the highest coverage

were 3NDf-1132rmod, EcoF-EcoR and Euka02, all showing coverage� 97%. These primers

amplified fragments with very different lengths, spanning from 100 bp (Euka02) to more than

800 bp (1813F_2646R; Table 2).

Taxonomic resolution

All primers showed a good resolution if the aim was species-level identification. Even the

primer with the lowest species-level resolution (Euka02), associated most (78%) of unique

metabarcodes with just one nematode species (Table 2, Fig 3). Eight primers showed a species-

level resolution >90%; all of them amplified fragments >350bp. The three primers with the

highest species-level resolution (95%) showed generally low coverage (Table 2, Figs 2 and 3).

If the aim was genus-level identification, all primers showed excellent resolution, as they

were able to tease apart 95% of genera or more. Resolution was even better if the target was

family identification, with all primers showing a resolution�97% (Table 2, Fig 3). Overall, we

observed a positive relationship between primer taxonomic resolution at the species level, and

Table 2. Results of in silico PCRs testing the taxonomic coverage and the resolution of 15 primer pairs proposed for nematode metabarcoding. Metabarcode length

refers to the length of the amplified fragment.

Primer Taxonomic Metabarcode length (bp) Taxonomic resolution

coverage mean Range Species Genus Family

1391f-EukBr 0.10 129.4 87–138 0.87 0.96 0.97

1813F-2646R 0.36 844.9 760–987 0.95 1.00 1.00

18SILVOmidF-18SILVOmid 0.96 742.3 664–905 0.92 0.99 1.00

3NDf-1132rmod 0.97 562.3 484–697 0.91 0.99 1.00

EcoF-EcoR 0.98 508.3 430–671 0.91 0.99 1.00

Ek_NSF573-Ek_NSR95 0.96 343.6 274–446 0.89 0.98 0.99

Euka02 0.97 99.2 50–330 0.78 0.95 0.99

F_1183-R_1631 0.92 414.4 331–565 0.86 0.98 0.99

FO4-R22 0.14 375.5 281–413 0.95 1.00 1.00

MMSF-MMSR 0.97 540.3 462–675 0.91 0.99 1.00

Nema02 0.94 435.6 357–599 0.90 0.98 1.00

NemF-18Sr2b 0.91 484.4 401–635 0.87 0.98 0.99

NemFopt-18Sr2bopt 0.91 489.4 406–640 0.87 0.98 0.99

NF1-18Sr2b 0.91 320.4 237–471 0.85 0.98 0.99

SSU_F04-SSU_R22 0.14 375.5 281–413 0.95 1.00 1.00

https://doi.org/10.1371/journal.pone.0298905.t002
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Fig 2. Taxonomic coverage (proportion of amplified sequences) of the 15 primer pairs tested in silico on the 18S-NemaBase.

https://doi.org/10.1371/journal.pone.0298905.g002

Fig 3. Species-, genus- and family- level taxonomic resolution of the 15 primer pairs tested in silico on the 18S-NemaBase.

https://doi.org/10.1371/journal.pone.0298905.g003
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the length of the amplified metabarcodes (linear regression: F1,13 = 13.6, P = 0.003; R2 = 0.51;

Fig 4), suggesting that the increase in the metabarcodes length facilitate taxonomic resolution

at the species-level.

Specificity

When tested on the whole GenBank, primers showed specificity values that ranged between

1% or less (FO4-R22, SSU_F04-SSU_R22) and ~7% (1813F-2646R, Nema02; Fig 5a). These

values indicate that all the markers amplify a very large number of non-nematode sequences.

Nevertheless, some of the primers with high specificity only amplified a limited number of

nematode taxa (Figs 1 and 5b). The primers with the best compromise between specificity and

Fig 4. Relationship between mean length (bp) of amplified fragments (excluding primers) and species-level resolution of the 15 primer pairs. The size of

symbols is proportional to primer coverage.

https://doi.org/10.1371/journal.pone.0298905.g004
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coverage included 18SILVOmidF-18SILVOmid, Euka02 and Nema02 (Figs 3–5). For both

nematodes and non-nematodes, weblogos showed clear differences in the patterns of variabil-

ity of bases in the regions matching the tested primers (Figs 6 and 7).

Discussion

Our analyses showed that primers suggested for the assessment of nematode diversity have

heterogeneous performances, particularly in terms of taxonomic coverage and specificity.

Conversely, the taxonomic resolution of all primers was generally good, and across-primer

variation in resolution was strongly related to the well-known trade-off with metabarcode

length (Fig 4). The selection of the most appropriate primer pair for the analyses of nematode

Fig 5. Specificity of the 15 primer pairs tested in silico on the whole Genbank database. a) Specificity was measured

as the N of nematode sequences / total N of amplified sequences. b) N of nematode species amplified by the different

primer pairs, when the in silico PCR is run on the whole GenBank.

https://doi.org/10.1371/journal.pone.0298905.g005
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Fig 6. Weblogos built on primer sequences from nematodes. The height of stacks corresponds to the nucleotide

conservation at that position; the height of symbols within stacks indicates the relative frequency of each nucleotide at

that position.

https://doi.org/10.1371/journal.pone.0298905.g006
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Fig 7. Weblogos built on primer sequences from non -nematodes. The height of stacks corresponds to the

nucleotide conservation at that position; the height of symbols within stacks indicates the relative frequency of each

nucleotide at that position.

https://doi.org/10.1371/journal.pone.0298905.g007
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biodiversity depends on the balance between multiple factors, including study aims, media

from which DNA is extracted, and the adopted sequencing technology.

The taxonomic coverage was highly variable. The majority of primers showed very good to

excellent coverage, as they amplified more than 90% (and sometimes >97%) of available

sequences, still, some showed limited coverage. The primers with low coverage were either

universal primers that amplify a large number of eukaryotes and are not designed specifically

for nematodes (FO4—R22, 1391f- EukBr) [40–42], or primers from landmark studies of nem-

atode phylogeny (1813F - 2646R, SSU_R22) [43, 44] that were developed using sequences

available at that time. It should be highlighted that our bioinformatic analyses are based on the

number and position of mismatches in the priming region. This parameter is particularly rele-

vant in metabarcoding studies, when DNA is amplified by complex mixtures comprising the

DNA of many different taxa. In these cases, a large number of mismatches is problematic. Spe-

cies with less mismatches are amplified preferentially, while species with more mismatches, or

with mismatches close to the 3’ end, tend to be overlooked [15, 16, 45, 46]. A few mismatches

probably are less problematic in phylogenetic studies, where the DNA of just one species is

extracted at each time directly from specimens [43, 44].

In silico assessments of primer coverage, like the one performed here, have their own limita-

tions, as some taxa may be amplified in vitro but not in silico, and vice versa. In silico analyses

focusing on curated databases can also miss key issues, such as non-specific amplification [28].

Nevertheless, several in vitro tests have confirmed the appropriateness of primers studied with

in silico analyses [11, 26–28, 47, 48]. For instance, our results are in agreement with previous

studies that used mock communities to compare the performance of MMSF-MMSR, NemF-

18Sr2b, NF1_18Sr2b and SSU_F04-SSU_R22, and observed a limited coverage of SSU_F04-S-

SU_R22 [18, 49]. Similarly, Kenmotsu et al. [50] confirmed that F_1183-R_1631 and

NF1_18Sr2b show a similar, very good performance; Geisen et al. [51] confirmed the excellent

performance of 3NDf-1132rmod; and Guardiola et al. [31] suggested an excellent coverage for

Euka02 [see also ref. 36 for in vitro tests confirming the excellent taxonomic coverage of this

marker for all the tested invertebrate phyla]. Nevertheless, comparative in vitro tests performed

on both mock communities and real samples will be extremely important to validate our con-

clusions on taxonomic coverage, particularly for primers that have received limited testing so

far [e.g., Nema02, but see references in 11 for analyses confirming the good performance of

related primers].

All primers showed good to excellent resolution on the considered reference database. Even

the shortest primer (Euka02) showed a reasonably good ability to discriminate between species

(Fig 3) and, for all primers, the frequency of genera sharing the same metabarcode was�5%

(i.e. genus-level resolution was always 95% or higher). These findings are highly promising for

the use of metabarcoding for nematode analyses. However, it is important to acknowledge

some caveats. The use of high quality, curated databases is fundamental for all the metabarcod-

ing analyses, being pivotal for assessments of marker performance, and for accurate taxonomic

identification [14, 52–55]. Our analyses were run on a large, curated database containing

about 5000 sequences from 214 families, 668 genera and 2734 species [10]. Unfortunately, this

database only represents the currently described species and genera, but most nematodes

inhabiting the Earth still require description [6, 56]. We stress that all measures of taxonomic

resolution strongly depend on the available data [57]. For instance, if the reference database

only includes one species within a given genus, analyses would return a species-level resolu-

tion, despite unanalysed species within that genus may share the same metabarcode [36]. Less

optimistic resolution values might be obtained with broader reference databases.

A key issue of the analysed primers is that none of them is specific to nematodes, and they

amplify a broad range of eukaryotes (Fig 5). Non-specific amplification can reduce the
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detection of rare taxa, and can even increase false positives [28, 37]. This can be particularly

problematic when analyses target complex mixtures of DNA(e.g. eDNA extracted from soil)

that comprise the DNA of both nematodes and other organisms [58, 59]. For instance, in vitro
assessments of the EcoF-EcoR primers detected a very large number of non-nematode taxa,

suggesting that this marker can be not appropriate for analyses only focusing on nematodes

[48]. The low specificity of most primers make them valuable for whole analyses of eukaryote

diversity in soil, sediments or aquatic environments [31, 40, 48]. Studies focusing on nema-

todes should thus assess whether the retrieved data are enough to obtain reliable estimates of

species diversity / occurrence. Approaches such as rarefaction curves and analyses of detection

probability can allow to assess whether key parameters, such as the number of replicates and

sequencing depth, are enough to obtain robust biodiversity estimates, or need to be increased

for well-grounded ecological inference [58, 60, 61]. Alternatively, fine-tuning the primer

sequences so as to introduce variability at the 3’end of the sequence for non-nematode can

greatly help increase the real marker specificity. For example, preliminary analyses of soil sam-

ples with the Nema02 marker showed that >50% of MOTUs and >70% of sequences were

assigned to nematodes, despite the limited specificity of this marker in silico.

Within the primers with good taxonomic coverage, resolution was clearly related to the

length of the amplified fragment (Fig 4). This is not unexpected, as longer fragments generally

include more variable sites and thus can provide a better resolution [14; see below for further

discussion]. Nevertheless, even the shortest fragments allow an excellent genus-level resolu-

tion. Many functional analyses of nematodes are performed at the genus level. For instance,

Nemaplex (http://nemaplex.ucdavis.edu) is a major database of nematode traits, and provides

traits at the genus-level resolution. Ensuring that primers provide robust identification at the

genus level is thus extremely important for all the studies focusing on nematode traits and

functional diversity.

The better resolution of markers amplifying long fragments is related to a frequent trade-

off between taxonomic resolution and fragment length. Long markers generally have a larger

number of informative bases, and are therefore expected to show a better capacity of discrimi-

nation between closely-related species. For instance, many barcoding studies use a standard

marker amplifying a 658-bp long fragment of COI, because it is assumed to provide enough

resolution to discriminate between closely-related species [62]. Nevertheless, the study of long

markers can be problematic in some conditions. First, DNA extracted from difficult substrates

(e.g., environmental DNA from sediments and water) or from museum specimens is often

degraded, making the use of long markers challenging [14, 62–65]. Furthermore, some high-

throughput sequencing technologies are particularly cost-effective for sequencing short ampli-

cons (e.g. Illumina NovaSeq), while cost-effectiveness decreases and error rate increases if lon-

ger fragments are targeted [62]. Therefore, when planning their study, researchers must find

the right balance considering study aims, targeted substrate and cost-effectiveness. Our analy-

sis can help to identify the most appropriate primer pair depending on the study focus. Mark-

ers amplifying short fragments (<150 bp) can be preferred by studies extracting DNA from

water or ancient sediments [66] or if the aim is the analysis of a massive amount of specimens

that require highly cost-effective sequencing platforms [62]. Longer fragments (within 450–

500 bp) can be appropriate for both metabarcoding of whole-organism community DNA, for

intracellular eDNA, and for eDNA extracted from substrates protecting eDNA from degrada-

tion (e.g. developed soils with high clay content) [67, 68]. These fragments can be sequenced

with platforms such as Illumina MiSeq, which still enable processing a large number of sam-

ples at reasonable prices. Primers well suited for this aim include 3NDf-1132rmod,

MMSF-MMSR and, if confirmed by in vitro tests, Nema02. Among these primers, Nema02 is

the one with the highest specificity for nematodes (Fig 5a and 5b). Finally, long fragments
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ensure the highest resolution and are particularly suited for whole-organism community DNA

[but see 19 for a remarkable example of long-read analysis of DNA extracted from environ-

mental samples]. It has been suggested that, beyond a given threshold, longer markers do not

provide a better resolution because of the occurrence of a saturation point [62]. For nema-

todes, we did not detect such saturation point, as the highest resolution tended to increase

with marker length also above 500 bp (Fig 4). The continuing developments of high-through-

put sequencing are making long-read metabarcoding increasingly feasible at progressively

more affordable prices.

Ongoing development of DNA metabarcoding are opening new avenues to the study of

biodiversity, and to the identification of management priorities [12, 69–71]. Nematodes are

increasingly recognized as key components of soil communities, and advances in molecular

approaches to assess and monitor their biodiversity are extremely important for the growing

knowledge on this highly diverse phylum [11, 56]. The selection of most appropriate markers

is a fundamental step to maximise the information drawn by each study [61].
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