

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Cell Lines

Generation of five induced pluripotent stem cells lines from four members of the same family carrying a *C9orf72* repeat expansion and one wild-type member

Chiara Lattuada^a, Serena Santangelo^{a,b}, Silvia Peverelli^a, Philip McGoldrick^c, Ekaterina Rogaeva^c, Lorne Zinman^d, Georg Haase^e, Vincent Géli^f, Vincenzo Silani^{a,g}, Janice Robertson^c, Antonia Ratti^{a,b,1}, Patrizia Bossolasco^{a,1,*}

^a Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy

^b Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy

^d Sunnybrook Health Sciences Centre, Toronto, Canada

e MPATHY Laboratory, Institute of Systems Neuroscience, U1106 INSERM & Aix-Marseille University, Marseille, France

^f Marseille Cancer Research Centre (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France

^g "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy

ABSTRACT

The most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) is the expansion of a G4C2 hexanucleotide repeat in the *C9orf72* gene. The size of the repeat expansion is highly variable and a cut-off of 30 repeats has been suggested as the lower pathological limit. Repeat size variability has been observed intergenerationally and intraindividually in tissues from different organs and within the same tissue, suggesting instability of the pathological repeat expansion. In order to study this genomic instability, we established iPSCs from five members of the same family of which four carried a *C9orf72* repeat expansion and one was wild-type.

Resource Table:		(continued)	
Unique stem cell lines identifier Alternative name(s) of stem cell lines	IAIi005-A IAIi006-A IAIi007-A IAIi008-A IAIi009-A AC52 (IAIi005-A)BC6 (IAIi006-A)CC5 (IAIi007-A)DC2 (IAIi008-A)EC1 (IAIi008-A)	Cell Source Clonality Method of reprogramming Genetic Modification Type of Genetic Modification Evidence of the reprogramming transgene loss (including genomic copy if applicable) Associated disease Gene/locus	(IAIi007-A) , Age:57, Sex: FemaleEthnicity: Caucasian (IAIi008-A) , Age:51, Sex: FemaleEthnicity: Caucasian (IAIi009-A) , Age:65, Sex: Female Fibroblasts Clonal Sendai virus No
Institution	IRCCS Istituto Auxologico Italiano, Milan, Italy Patrizia Bossolasco, p.		N/A RT-PCR
Type of cell lines	bossolasco@auxologico.it iPSC		Amyotrophic lateral sclerosis (ALS) C9orf72 gene/chromosome 9p21.2
Origin Additional origin info required	Human Ethnicity: Caucasian (IAIi005-A), Age:89, Sex: MaleEthnicity: Caucasian (IAIi006-A) , Age:65, Sex: FemaleEthnicity: Caucasian	Date archived/stock date Cell line repository/bank	https://hpscreg.eu/cell-line/IAIi005-A https://hpscreg.eu/cell-line/IAIi006-A https://hpscreg.eu/cell-line/IAIi007-A (continued on pert page)
	(continued on next column)		(continued on next page)

* Corresponding author.

E-mail address: p.bossolasco@auxologico.it (P. Bossolasco).

¹ Joint last authors.

https://doi.org/10.1016/j.scr.2022.102998

Received 26 September 2022; Received in revised form 21 November 2022; Accepted 4 December 2022 Available online 9 December 2022

1873-5061/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^c Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Canada

(continued)

1. Resource utility

Ethical approval

https://hpscreg.eu/cell-line/IAIi008-A https://hpscreg.eu/cell-line/IAIi009-A Ethical committee of IRCCS Istituto Auxologico Italiano, approval number 2022_03_15_12

\$ \$ \$ 5 5 5 E E

Fig. 1. Characterization of the five iPSC lines.

2. Resource details

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting spinal, bulbar and cortical motor neurons and leading to a progressive muscular atrophy with rapid death of patients, usually due to respiratory failure. Expansion of the G₄C₂ hexanucleotide repeat in the first intron of C9orf72 gene is the most common genetic cause of ALS and Frontotemporal Dementia (FTD) (DeJesus-Hernandez and Mackenzie, 2011; McGoldrick et al., 2018). The number of G₄C₂ repeats is polymorphic: 2-23 units in healthy subjects, but>30 to up to thousands in ALS/FTD patients. The correlation between repeat expansion length and disease severity or phenotype still needs to be fully clarified in particular for small expansions (<100 repeats). Similarly, how these expansions may have occurred by genome instability is still under debate. We generated iPSCs lines from five members of the same C9orf72 family (PED25) already described (Renton et al., 2011; Xi et al., 2015). Previous Southern Blot analysis on both peripheral blood and fibroblasts revealed a small expansion for the asymptomatic father (AC52) (70 repeats), while the three daughters with ALS (BC6, CC5, DC2) had a larger expansion (\sim 1,750 repeats) and one unaffected daughter (EC1) was wild-type (Renton et al., 2011; Xi et al., 2015). Reprogramming was performed on fibroblasts of all these family members using a non-integrating Sendai virus commercial kit. One clone from each subject was fully characterized. All clones displayed an iPSClike morphology (Fig. 1A), were positive both by immunocytochemistry (Fig. 1B) and qPCR (Fig. 1C) for the pluripotent markers Oct3/4, Nanog and Sox2 and exhibited a normal karyotype (Fig. 1D). Short tandem repeat (STR) analysis confirmed matching of all 22 STR markers between fibroblasts and iPSC, indicating cell identity. Maintenance of a small repeat expansion (47 repeats) in iPSCs of the father, a larger expansion in iPSCs of three ALS daughters and the absence of the expansion in the wild-type daughter's iPSCs was confirmed by Repeatprimed PCR (Fig. 1E). Absence of Mycoplasma contamination was verified by PCR (Suppl. Fig. 1). All clones were able to spontaneously differentiate into the three germ layers in vitro as revealed by positivity to specific markers by immunocytochemistry (endoderm: alphafetoprotein (AFP); mesoderm: desmin; ectoderm: ßIII Tubulin (BIIITub)) (Fig. 1F). Absence of Sendai vector transcripts (Klf4, KOS, cmyc, and Sev) was confirmed by semi-quantitative RT-PCR (Fig. 1G and Table 1).

In summary, we generated clonal cell lines from five members of the same family, fulfilling all the criteria to be considered iPSCs and representing a useful *in vitro* model to study genetic instability of the *C9orf72* repeat expansion. Indeed, in this family, the small repeat expansion of the unaffected father jumped to a larger pathogenic length in the three daughters presenting with ALS (Renton et al., 2011; Xi et al., 2015).

3. Materials and methods

3.1. Fibroblast reprogramming

Fibroblasts from the five family members were obtained and propagated as previously described (Renton et al., 2011). Fibroblasts below passage six were frozen and shipped to the laboratory of Neurosciences (Istituto Auxologico Italiano IRCCS, Italy) where they were reprogrammed using the CytoTune®-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific). At day 7, transduced cells were harvested and plated onto Matrigel (Corning) coated dishes. Medium was switched to Essential 8 medium (Thermo Fisher Scientific) until emerging colonies reached a suitable size to be picked. Colonies were grown at 37 °C, 5 % CO2 and passaged 1:10 using 0.5 mM EDTA solution.

3.2. Stemness evaluation

Expression	of	stemness	markers	was	evaluated	by

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology Phenotype	Photography Bright field Qualitative analysis: immunocytochemistry	Normal Expression of the pluripotency markers: Oct3/4, Nanog, Sox2	Fig. 1A Fig. 1B
	Quantitative analysis: qPCR	Expression of the pluripotency markers: Oct3/4, Nanog Soy2	Fig. 1C
Genotype	Karyotype (Q-banding) and resolution	AC52: 46,XY BC6: 46,XX CC5: 46,XX DC2: 46,XX EC1: 46,XX	Fig. 1D
Identity	STR analysis	22 loci analyzed, 22 matched	Available from the authors
Mutation analysis (IF APPLICABLE)	Sequencing	Number of GGGGCC repeats in C9orf72 AC52: 2/47 BC6: 2/> 145 CC5: 2/> 145 DC2: 2/> 145 EC1: 2/2	Fig. 1E
Microbiology and virology	Southern Blot OR WGS Mycoplasma	Not performed Venor® <i>GeM</i> OneStep Mycoplasma detection: all negative	Suppl. Fig. 1
Differentiation potential	Embryoid body derived germ layers	Expression of specific markers: endoderm: AFP, mesoderm: desmin and ectoderm: ßIIITub	Fig. 1F
List of recommended germ layer markers	Expression of the markers has to be demonstrated at mRNA (RT PCR) or protein (IF) levels, at least 2 markers need to be shown per germ layer	Expression of specific markers: endoderm: AFP, mesoderm: desmin and ectoderm: fillTub	Fig. 1F
Donor screening (OPTIONAL)	HIV $1 + 2$ Hepatitis B, Hepatitis C	Not performed	N/A
Genotype additional info (OPTIONAL)	Blood group genotyping HLA tissue typing	Not performed Not performed	N/A N/A

immunocytochemistry and by qPCR. iPSCs grown for 6 passages on coverslips were fixed in 4 % paraformaldehyde (Santa Cruz Biotechnology), permeabilized with 0.3 % Triton X-100 and incubated for 20 min in blocking buffer containing 10 % normal goat serum (Gibco) in PBS. Cells were incubated with primary antibodies (Table 2) for 90 min at 37 °C and then with fluorescently-labelled secondary antibodies (Table 2) for 45 min at room temperature, both antibodies diluted in blocking buffer. Nuclei were stained with DAPI (Sigma-Aldrich). Images were acquired with Eclipse C1 confocal microscope and NIS-elements software (Nikon). For qPCR, total RNA was extracted from iPSCs and fibroblasts using TRIzol Reagent following manufacturer instructions and reverse transcribed using SuperScript II reverse transcriptase. Amplicons were obtained in duplicates with specific primer pairs (Table 2) and SYBRGreen reaction mix (All from ThermoFisher Scientific) using QuantStudio 12 k Flex instrument (Applied Biosystems). Target gene expression data (Ct) were normalized to RPL10a gene Ct values and fold change was calculated as $2^{-\Delta\Delta Ct}$.

3.3. Karyotyping

Standard cytogenetic procedures were used to analyse iPSC

Table 2

	Antibodies used for immunocytochemistry/flow-cytometry				
	Antibody	Dilution	Company Cat #	RRID	
Pluripotency marker	Mouse anti-Oct-3/4	1:200	Santa Cruz Biotechnology cat#sc-5279	RRID:AB_628051	
	Rabbit anti-Nanog	1:200	Abcam cat#ab21624	RRID:AB_446437	
	Rabbit anti-Sox2	1:70	Abcam cat#ab15830	RRID:AB_443255	
Differentiation Markers	Rabbit anti-β III tubulin	1:500	Abcamcat#ab-52623	RRID:AB_869991	
	Rabbit anti-Desmin	1:10	Chemicon Milliporecat#AB907	RRID:AB_2092609	
	Mouse anti-Alpha-fetoprotein	1:125	Invitrogen cat#14-6583-80 RRID:AB		
Secondary antibodies	Alexa FluorTM 488 goat anti-mouse IgG (H+L)	1:500	Life Technologies cat# A-11001 RRID:AB_253		
	Alexa FluorTM 488 goat anti-rabbit IgG	1:500	Life Technologiescat#A-11008	RRID:AB_143165	
	Alexa FluorTM 555 goat anti-rabbit IgG (H+L)	1:500	Life Technologies cat# A-21428	RRID:AB_2535849	
Nuclear stain	4',6-diamidino-2-phenylindole, dihydrochloride (DAPI)	2 μg/mL	Sigma-Aldrich D9542		
	Primers				
	Target	Size of band	Forward/Reverse primer (5′-3′)	
Pluripotency Markers (q-PCR)	Oct-04	81 bp Fwd		ACACTG	
			Rev: CCACACTCGGACCAC	CATCCT	
	NANOG	154 bp	Fwd: TGAACCTCAGCTAC	AAACAG	
			Rev: TGGTGGTAGGAAGA	GTAAAG	
	SOX2	151 bp	151 bp Fwd: GGGAAATGGGAGGGGTGCAAAAGA		
			Rev: CACCAATCCCATCCA	CACTCACGCAA	
House-Keeping Genes (q-PCR)	RPL10a	51 bp	Fwd: GAAGAAGGTGTTATGTCTGG		
			Rev: TCTGTCATCTTCACGTGAC		
Sendai virus detection (RT-PC	R) KOS	528 bp	Fwd: ATGCACCGCTACGACGTGAGCGC		
			Rev: ACCTTGACAATCCTC	GATGTGG	
	Klf4	410 bp	Fwd: TTCCTGCATGCCAG	AGGAGCCC	
	Sev	181 bp	Rev: AATGTATCGAAGGT	GCTCAA	
	c-myc	532 bp	Fwd: TAACTGACTAGCAG	GCTTGTCG	
			Rev: TCCACATACAGTCCT	GGATGATGATG	
	Sev	181 bp	Fwd: GGATCACTAGGTGA	TATCGAGC	
			Rev: ACCAGACAAGAGTT	TAAGAGATATGTATC	
	RPL10a	228 bp	Fwd: CAAGAAGCTGGCCA	AGAAGTATG	
			Rev: TCTGTCATCTTCACG	TGAC	
Genotyping	C9orf72 expansion	From 129bp	AmplideX® PCR/CE C9ord	72 Kit - Asuragen	

karyotype. Following overnight addition of Colcemid solution (KaryoMAXTM, Thermo Fisher Scientific), chromosome analysis was achieved by Q-Band staining.

Not performed

3.4. STR analysis

Targeted mutation analysis/sequencing

Genomic DNA from the 5 iPSCs cell lines and from the parental fibroblasts was extracted using Wizard Genomic DNA Purification kit (Promega). The genetic STR profile was obtained using ChromoQuant SuperSTaR Optima QF-PCR Kit (CyberGene AB) detecting 22 STR loci (mix solution 1) according to the manufacturer instructions. Amplicons were run on ABI Prism 3500 (Applied Biosystems) and analyzed using Gene Mapper v.4 software (Applied Biosystems).

3.5. Mutation analysis

The presence of the *C9orf72* repeat expansion in iPSCs and fibroblasts was evaluated by Repeat-primed PCR using a commercial kit (Asuragen). Amplicons were analyzed on ABI 3500 Genetic Analyzer and by using Gene Mapper v.4 software. The kit allows detection of repeat expansions up to 145 units.

3.6. Mycoplasma detection

Absence of mycoplasma contamination was evaluated by PCR using a commercial Kit from Minerva biolabs.

3.7. In vitro spontaneous differentiation

To evaluate the spontaneous differentiation potential of iPSCs into the three germ layers, we generated embryoid bodies (EBs) cultured on low adhesion plates in for 7 days (HUES medium). EBs were seeded onto Matrigel-coated plates in Essential 8 medium for an additional 10 days. Immunocytochemical analysis were performed to evaluate the expression of mesodermal, ectodermal and endodermal specific markers (Table 2).

N/A

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

N/A

This work was financially supported by Italian Ministry of Health (E-Rare-3 JTC Grant REPETOMICS).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scr.2022.102998.

References

- DeJesus-Hernandez, M., Mackenzie, I.R., et al., 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72 (2), 245–256. https://doi.org/10.1016/j.neuron.2011.09.011.
- McGoldrick, P., Zhang, M., van Blitterswijk, M., Sato, C., Moreno, D., Xiao, S., Zhang, A. B., McKeever, P.M., Weichert, A., Schneider, R., Keith, J., Petrucelli, L., Rademakers, R., Zinman, L., Robertson, J., Rogaeva, E., 2018. Unaffected mosaic C9orf72 case: RNA foci, dipeptide proteins, but upregulated C9orf72 expression. Neurology 90 (4), e323–e331. https://doi.org/10.1212/WNL.000000000004865.
- Renton, A.E., Majounie, E., Waite, A., et al., 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72 (2), 257–268. https://doi.org/10.1016/j.neuron.2011.09.010.
- Xi, Z., van Blitterswijk, M., Zhang, M., McGoldrick, P., McLean, J.R., Yunusova, Y., Knock, E., Moreno, D., Sato, C., McKeever, P.M., Schneider, R., Keith, J.,

Petrescu, N., Fraser, P., Tartaglia, M.C., Baker, M.C., Graff-Radford, N.R., Boylan, K. B., Dickson, D.W., Mackenzie, I.R., Rademakers, R., Robertson, J., Zinman, L., Rogaeva, E., 2015. Jump from pre-mutation to pathologic expansion in C9orf72. Am. J. Hum. Genet. 96 (6), 962–970. https://doi.org/10.1016/j.ajhg.2015.04.016.