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Abstract

We consider the initial-boundary value problem for the heat equation in the half space with an
exponential nonlinear boundary condition. We prove the existence of global-in-time solutions
under the smallness condition on the initial data in the Orlicz space expL?> (]Rﬁ ). Furthermore,
we derive decay estimates and the asymptotic behavior for small global-in-time solutions.
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1 Introduction

We consider the initial-boundary value problem for the heat equation in the half space RY =
{x = (', xy) € RY : xy > 0} with a nonlinear boundary condition

o = Au, xeRi’, t >0,

u(x,0) = px), xeRY, (1.1)
du = f(u), xedRY, >0,
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where N > 1, 9, = 9/d¢t, 9, = —d/dxy, and ¢ is the given initial data. Here f(u) is the
nonlinearity which has an exponential growth at infinity with f(0) = 0. More precisely, the
condition for the nonlinearity (see (1.9)) covers certain limiting cases which are critical with
respect to the growth of the nonlinearity and the regularity of the initial data. In this paper,
under a smallness condition on the initial data, we prove the existence of global-in-time
solutions to problem (1.1). Furthermore, we derive some decay estimates and the asymptotic
behavior of small global-in-time solutions.

The nonlinear boundary value problem such as (1.1) can be physically interpreted as a
nonlinear radiation law. The case of power nonlinearities f (1) = lu|P~ u with p > 1, that
is,

oiu = Au, xeRf, t >0,
u(x,0) = p(x), xeRY, (1.2)
du=ulP~'u, xedRY, t>0,

has been extensively studied in many papers (see e.g. [5, 6, 11, 13, 17-22, 25, 26] and the
references therein). It is well-known that problem (1.2) satisfies a scale invariance property,
namely, for A € R, if u is a solution to problem (1.2), then

1

u (x, 1) := A7 Tu(hx, A%t) (1.3)
is also a solution to problem (1.2) with initial data ¢, (x) := A/®~Dg(ix). In the study
of the nonlinear boundary value problem (1.2), it seems that all function spaces invariant
with respect to the scaling transformation (1.3) play an important role. In fact, for Lebesgue
spaces, we can easily show that the norm of the space LY (]Rf) is invariant with respect to
(1.3)ifand only if ¢ = ¢, := N(p—1), and, for the given nonlinearity |u|”~u, the Lebesgue
space L4¢ (R_’X ) plays the role of critical space for the local well-posedness and the existence
of global-in-time solutions to problem (1.2) (see e.g. [13, 18, 20]).

On the other hand, the case of the Cauchy problem with the power nonlinearity, that is,

du=Au+uP'u, xeRY, 1>0, u@x,0=9¢kx), xeRY, (14

also satisfies a scale invariance property, namely, for A € R, if u is a solution to problem
(1.4), then

2

w(x, 1) = A7 Tu(hx, A21) (1.5)

is also a solution to problem (1.4) with the initial data ¢, (x) := pe (”_1)<p(kx). So we can
easily show that the norm of the space L7 (R") is invariant with respect to (1.5) if and only
if g = G- :== N(p — 1)/2, and it is well-known that the Lebesgue space L (R") plays
the role of critical space for the well-posedness of problem (1.4) (see e.g. [3, 12, 27, 30, 31]
and references therein). Furthermore, the scaling property (1.5) also holds for the nonlinear
Schrodinger equation

idu—+ Au=ulPlu, xeRY, 1>0, ux,0=¢pkx), xeRY, (16

and it is well known that the Sobolev space H* (RN) with s, := N/2 —=2/(p — 1) plays
the role of critical space for the well-posedness of problem (1.6) (see e.g. [4]). From these
results, we have two critical growth rates of the nonlinearity, that is, p; = 1 + (2q)/N
and py := 1+ 4/(N — 2s), and these two critical exponents are connected by the Sobolev
embedding, H* (RY) < L4(RV), wheres and g satisfy0 <s < N/2and1/q = 1/2—s/N.
The case s, = N /2 is a limiting case from the following points of view:
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(i) fors > N/2, H*(RY) embeds into L®(R");
(ii) any power nonlinearity is subcritical, since H N/2(RNY) embeds into any L4 (RM) space
(for g > 2);
(iii) HN/2(RN) does not embed into L (RY), and thanks to Trudinger’s inequality [29] one
knows that HV/2(RN) embeds into the Orlicz space expLz(RN ).

For this limiting case, Nakamura and Ozawa [24] consider the nonlinear Schrédinger equa-
tion with an exponential nonlinearity of asymptotic growth f(u) ~ "’ and with a vanishing
behavior at the origin, and they show the existence of global-in-time solutions under a small-
ness assumption of the initial data in H N/Z(RN)Y,

As a natural analogy to the results of [24], the third author of this paper and Ruf [28]
and Ioku [14] consider the Cauchy problem of the semilinear heat equation with exponential
nonlinearity of the form

FQu) = lul ¥ ue” 1.7

and the initial data ¢ belonging to the Orlicz space expL>(R") defined as

2
expL*(RY) := {u € Llloc(RN); A;N (exp <|u()jc)|> — 1) dx < oo forsomel >0

(see also Definition 2.1). They consider the corresponding integral equation

u®) = o+ /t I8 £u(s)) ds, (1.8)
0

and prove the existence of local/global-in-time (mild) solutions to this equation (1.8) under the
smallness assumption of initial data in expL?(R"). Furthermore, the authors of this paper and
Ruf [10] show the equivalence between mild solutions (solution to the integral equation (1.8))
and weak solutions to the heat equation with the nonlinearity f (u#) asin (1.7), and derive some
decay estimates and the asymptotic behavior for small global-in-time solutions. The growth
rate of (1.7) at infinity seems to be optimal in the framework of the Orlicz space expL>(RY).
In fact, if f(u) ~ el"” with r > 2, there exist some positive initial data ¢ € expL*(R") such
that problem (1.8) does not possess any classical local-in-time solutions (see [15]). For the
fractional diffusion case and general power-exponential nonlinearities, see e.g. [8, 10, 23].
Furthermore, for ¢ € expLz(RN ), which implies ¢ € L? (RM) for p € [2, 00), the decay
rate of (1.7) near origin, that is, f(u) ~ |u|*"u, is optimal in the framework of L*(R").
See e.g. [3, 30].

The above limiting case in RV appears from the relationship between pj, and py by the
Sobolev embedding. For problem (1.2), we can easily show that the norm of the space H* (Rf )
is invariant with respect to (1.3) if and only if s = 5. := N/2 — 1/(p — 1), and we have two
critical growth rate of the nonlinearity, thatis, p, = 1 +¢/N and p; = 1 +2/(N — 2s).
These two exponents are also connected by the Sobolev embedding, H* (Rﬁ ) — L4 (Rﬁ ),
where s and ¢ satisfy the same conditions as in the case of R". This means that the same
limiting case appears for problem (1.2). On the other hand, as far as we know, there are no
results which treat the exponential nonlinearity for the nonlinear boundary problem (1.1).

Based on the above, in this paper, we assume that the nonlinearity f satisfies the following:
there exist Cy > 0 and A > 0 such that

1F @) — F)I < Crlu — v](lu] ¥ e + o] ¥ )
forevery u,v € R, f(©0) =0. (1.9)
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This assumption covers the case
22
fu) = £[ulNue",

which is one of the candidates for the optimal growth rate of the nonlinearity in the framework
of the Orlicz space expLz(]Rﬁ) and the optimal decay rate near origin in the framework of
LZ(R_’X) (see e.g. [18]). Following [10, 14, 28], for problem (1.1) with (1.9), we consider the
corresponding integral equation, and prove the existence of global-in-time (mild) solutions
under some smallness assumption of the initial data in expL2(R$ ). Furthermore, we obtain
some decay estimates for the solutions in the following two cases

¢ € expLz(Rﬁ) only (slowly decaying case), and ¢ € expLz(Rﬁ) N LP(Rﬂ) with
p € [1,2) (rapidly decaying case).
In particular, for the rapidly decaying case p = 1, we show that the global-in-time solutions
with some suitable decay estimates behave asymptotically like suitable multiples of the Gauss
kernel.

Before treating our main results, we introduce some notation and define a solution to
problem (1.1). Throughout this paper we often identify RY ~! with BRﬁ .Letgy = gn(x, 1)
be the Gauss kernel on RV, that is,

x|

en(x, 1) = )~ Texp (— "

), xeRY, >o0. (1.10)

Let G = G(x, y, t) be the Green function for the heat equation on Rf with the homogenous
Neumann boundary condition, that is,

Glx,y, 1) =gn@x —y, ) +en@x =y 1), x,y€RY, >0, (1.11)

where y, = (y/, —yn) fory = (y/, yn) € @ Then, we define a (mild) solution to problem

(1.1).

Definition 1.1 Let ¢ € expL2(RY), T € (0,00], and u € C(RY x (0,T)) N
L>(0, T; expL?(RY)).

(i) Inthecase when N > 2, we call u a solution to problem (1.1) in Rﬁ x (0, T) if u satisfies

ur. 1) = [N G(x. y. Dp(y) dy

RY

t
+/ / G(x,y,0,t —s)fu(y,0,s))dy ds (1.12)
0 Jry-1

for (x,t) € @ x (0, T) and u(t) —6 ¢ in the weak™ topology.
11—

(ii) In the case when N = 1, we call u a solution to problem (1.1) in (0, c0) x (0, T) if u
satisfies

o0 t
u(x,t) :/ G(x,y,t)w(y)dy+/ G(x,0,t —5)f,s)ds  (1.13)
0 0
for (x,t) € [0,00) x (0, T) and u(r) —>O ¢ in the weak™ topology.
t—

In the case when T = oo, we call u a global-in-time solution to problem (1.1).
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We recall that u(t) P in weak™ topology if and only if
t—

lim / (u(x, HY(x) — (p(x)l/f(x)) dx =0
t—0 ]RX

for any ¥ belonging to the predual space of expLz(R_’X ) (see Sect. 2).

In what follows, we denote by || - [lexpz2 the norm of expL2 = expLz(Rf ) defined by
(2.14), for r € [1, 00], we write || - |- = || - ”L’(Rﬁ) and | - |- = || - | pr@n-1y for
simplicity. Furthermore, for a function ¢ (x’, xy) with x’ € R¥~! and xy € [0, 0), we
write || = [|¢(x", 0) | Lr V-1

Now we are ready to state the main results of this paper. First we show the existence of
global-irzl-time solutions to problem (1.1) under the smallness assumption of the initial data
in expL-.

Theorem 1.1 Let N > 1 and ¢ € expL?. Suppose that f satisfies (1.9). Then there exist
positive constants € = €(N) > 0 and C = C(N) > 0 such that, if ||(p||eXpLz < &, then there
exists a unique global-in-time solution u to problem (1.1) satisfying

Sug <|Iu(t)||expL2 Jrh(t)llu(t)llLoo> = Cll@llexpr2s (1.14)
1>

where h(t) = min{tN/*, 1}, and for any q € [2, 00),

1

€1 q
sup 24 |u(t)| e < C{F (i + 1) } Illexpr2:  if N =2,
t>0 2

(1.15)

1

1 .
sup 1% [u(0, )] < c{r (2+1) } Illexprzs i N =1,

t>0

where I is the gamma function
o0
I'(g) := / g9 e 5 dg, ¢ > 0.
0

Remark 1.1 (i) By the definition of RY,if N > 2, then the boundary of R is R¥ !, namely,
itis unbounded. On the other hand, if N = 1, then the boundary of R is x = 0, namely,
it is only one point. From these differences, we need to divide the proof into two cases,
N > 2and N = 1, and we have two estimates as in (1.15).

(ii) Following [15], we denote by expL% (Rﬁ ) the closure of C§° (Rﬁ ) in expL2 (Ri’ ). Then,
by an argument similar to that in the proof of [15, Theorem 1.2], it seems likely to obtain
the existence of local-in-time solutions to problem (1.1) for any ¢ € expL(Z)(]Rf ) under
the weaker condition

|f ) — F)| < Clu — v|(e™ + &™) forevery u,veR,  f(0)=0,

where A > 0 and C > 0. This has not been fully explored and it is left for further
investigation.

From now, we focus on the unique solution u to problem (1.1) satisfying (1.14) and

(1.15). The following result gives some decay estimates for the slowly decaying case, that
is, ¢ € expL? only.
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Theorem 1.2 Assume the same conditions as in Theorem 1.1. Furthermore, suppose that
there exists a unique solution u to problem (1.1) satisfying (1.14) and (1.15). Then there exist
some positive constants € = e(N) > 0 and C = C(N) > 0 such that, if ||‘/7||expL2 < &, then
the solution u satisfies

=

sup ¢
t>1

11 1 )
(z q)(IIM(I)IILq + 1% Iu(t)ILq> < Cliglepr2s  if N =2,
(1.16)

1ol 1 1
sup 1212 W(nwnm + 1% |u (0, r)|) < Cll@llexprz.  if N=1,

t>1

forall g € [2, c0].

Remark 1.2 (i) By Theorem 1.1, if l@llexpr2 is small enough, then we can show that the
assumption of Theorem 1.2 is not empty.

(i) We obtain the same decay estimate as the solution to the heat equation in Rﬁ with the
homogeneous Neumann boundary condition and initial data in L2, See (G) in Sect. 2.

Next we consider the rapidly decaying case, that is, ¢ € expL? N L? with p € [1,2).
We can prove two kinds of results about decay estimates of solutions to problem (1.1). In
Theorem 1.3, we only assume the smallness condition of the expL2 norm of the initial data.
This means that we can allow the L” norm of the same data to be large. On the other hand,
under this mild assumption, we have an additional restriction about the range of L4 spaces for
the case N > 3.In Theorem 1.4, under a stronger assumption, that is, a smallness assumption
not only for the expL? but also for the L” norm of the initial data, we obtain better decay
estimates, with no additional restrictions about the range of L7 spaces even for the case
N > 3. In the following we denote for any r > 1

” : ”expLzﬂLV = maX{|| ° ”expL27 ” ° ”Lr}' (117)

Theorem 1.3 Assume the same conditions as in Theorem 1.2. Furthermore, assume ¢ €
LP(RQ\_')for some p € [1,2). Put

2N (1.18)
‘=max{p, —— . )
b1 PN

Then there exist some positive constants € = ¢(N) > 0, C = C(N) > 0 and a positive
function F = F(N, p1, |l¢|lLri, ) such that, if

l@llexpr2 < minfe, F}, (1.19)

then the solution u satisfies

Nl _ 1 1 .
sup ¢ @ ")<|Iu(l)llm + 1% Iu(l)qu) < Cligllexprzrr s if N =2,
>

o | (1.20)
sup tﬂrw(”um”” + 120 u 0, r>|> < Cllplexprznze: i N =1,
t>0
forall g € [p1, ool. In particular, if p1 € (1, 2), then
_yL_1
llu (@)l e =0<t e ) t — oo. (1.21)
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Theorem 1.4 Assume the same conditions as in Theorem 1.3. Then there exists a positive
constant ¢ = g(N) such that, if lellexpr2ner < & then (1.20) with py = p holds for all
q € [p, ool. In particular, for all g € [p, 00),
ﬂ(i_l) 1
sup (14177 (nu(z)nm +1% |u(z>|m) < Cliglleprznzr.  if N =2,
=0 (1.22)

1(1_1 1 .
sup (1 +t)2<” q)<||“(t)||L‘i + 12 u(0, t)l) < Cl@llexpr2nzr, if N=1
t>0

Furthermore, if p € (1,2) or N > 3, then (1.21) with p1 = p holds.

Remark 1.3 By (1.9) the nonlinearity f(u) behaves like |u|'*2/N for u — 0. So, for the case
N > 2, since it follows from (1.15) that u € Li’&(O, 00; Lq(B]Rf)) for ¢ > 2, the nonlinear
term f(u) belongs to Lp(aRf) for p > (2N)/(N + 2). For the case N = 2, this means
that f(u) € L”(BRﬁ) for all p > 1, but this implies a true constraint for the case N > 3.
This is the reason why in Theorem 1.3 we have to introduce some parameters p; (and p;,
p3, and pg in Lemmata 2.2, 5.1, and 5.6, respectively) which are meaningful only for the

case N > 3.

Finally we address the question of the asymptotic behavior of solutions to problem (1.1)
when ¢ € expL? N L'. We show that global-in-time solutions with suitable decay properties
behave asymptotically like suitable multiples of the Gauss kernel.

Theorem 1.5 Let N > 1 and ¢ € expL*>NL! (Rﬁ). Furthermore, let u be the global-in-time
solution to problem (1.1) satisfying (1.22). Then there exists the limit

my = lim u(x,t)dx
11— 00 Rﬁ
such that
N 1
Tim 1270 u() = 2megn 0l =0, g € [1,00]. (1.23)
—>00

Remark 1.4 For the case N > 2, by (1.12) we see that

My 2/ w(x)dx+/oo/ Ffu',0,1)dx' dt.
Rﬁ 0 RN-1

On the other hand, for the case N = 1, by (1.13) we have

my = /oow(x) dx + foo fu(0,1))dt.
0 0

The paper is organized as follows. In Sect. 2 we recall some properties of the kernel G
and its associate semigroup. In Sect. 3, applying the Banach contraction mapping principle,
we prove Theorem 1.1. In Sects. 4 and 5, modifying the arguments of [20], we derive decay
estimates on the boundary, and prove Theorems 1.2, 1.3, and 1.4. In Sect. 6 we obtain the
asymptotic behavior of solutions to problem (1.1).

2 Preliminaries
In this section we recall some properties of the kernel G = G(x, y, t) and its associate

semigroup. Throughout this paper, by the letter C we denote generic positive constants that
may have different values also within the same line.
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We first recall the following properties of the kernel G (see e.g [13, 20, 22]):
1) fN G(x,y,t)dy =1forany x € @andt > 0;
R+
(ii) for any (x, 1), (z,s) € Rf X (0, 00), it holds that

/NG(x,y,z)G(y,z,s)dy =G(x,z,t+5). 2.1
R

+

By (1.11) we have
v —v.0) < G(x,y.0) <2gn(x —y.1), x,yeRY, t>0. 2.2)
Furthermore, it follows from (1.10) and (1.11) that
G(x',0,y,1) =21 (v, Dgn_1(x’ =y, 1), x eRV7! ye RW, t>0. (2.3)

We denote by S;(#)¢ the unique bounded solution to the heat equation in Rﬁ with the
homogeneous Neumann boundary condition and the initial datum ¢, that is,

1001w = [ Gt yneydy, xeRY, >0, 4

+

and denote by ¢'2’y the unique bounded solution to the heat equation in R¥~! with the
initial datum v, that is,

@6 = [ el <y ov00dy. X eRVL 1s00 @)
RN-1
In the case where N > 2, we put
[S2(0V]1() =281 (ay, D[ X Y, x eRY, 1> 0, 2.6)
fory e L" (R¥—1) with some r € [1, co]. Since it holds that, for any r € [1, o0],
_L —Na-1
lgn@llLr <477 @Ar)" 2077, >0, 2.7

by (2.2), (2.3), and applying Young’s inequality to (2.4) and (2.5) we have the following.

(G1) There exists a constant ¢, which depends only on N, such that

,E(l,l)
1S1®Oelier <cit 240 ele, >0, (2.8)

forp € L4 (Rﬁ )and 1 < g < r < oo. Furthermore, there exists a constant ¢, which
depends only on N, such that, for the case N > 2,

,ﬂ(l,l),i
[S1@®)lrr <cot 274 7 T @llLe, t >0, (2.9
and, for the case N =1,
_1
[[S1®)@l0)] < cat 2 |@liLe, t>0. (2.10)
(G») Forany ¢ € LI@RNYand1 < q <r < o0, it holds that
1 1
1209l < € 2@ 72Dy, s, @.11)

N—1,1 1 1
1S5 < Ct™ 7 @Iy e, 1> 0. (2.12)
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(G3) Letgp e LY (R_’X) with 1 < g < oo. Then, for any 7' > 0, S (¢)¢ is bounded and smooth

in RY x (T, 00).
We recall now the definition and the main properties of the Orlicz space expL?.

Definition 2.1 We define the Orlicz space expL? as

2
expL2 = [u c L}OC(Rﬁ); /RN <exp <|u(;c)|> — 1) dx < oo forsome A > 0} R
+

(2.13)

where the norm is given by the Luxemburg type

2
i lexpr2 :=inf[k>05uchthat/ (exp(lu(x)|> —1) dx51]. 2.14)
RY A

The space expL? endowed with the norm ||u llexpz2 is a Banach space, and admits as predual

the Orlicz space defined by the complementary function of A(t) = e’ — 1, denoted by
4(t). This complementary function is a convex function such that A(t) ~ t2ast — 0and
A(t) ~ tlogl/zz ast — oo. (see e.g. [2, Section 8].) Furthermore, it follows from (2.13)
that

L*RY)ynL®RY) c expL?, (2.15)
and we have
1
lullexpr2 < @(Ilullu + llullLoe). (2.16)

(In the case where 2 = RV, see e.g. [15, 23].) On the other hand, it is well known that, for
any 2 < p < oo,

1
P 7
Julr < [T (E + 1) Ml @.17)

(See e.g. [15, Proposition 2.1].) Then, applying the same argument as in the proof of [14,
Lemma 2.2] with (2.17), we have

”Sl (Z)(/)”expLz E ”(p”expLza r> 0 (218)
Next we recall the following property of the Gamma function.

Lemma 2.1 [10, Lemma 3.3] Forany q > 1 and r > 1, there exists a positive constant
C > 0, which is independent of q and r, such that

1
C(rqg +1)7s <CL(r+ 1)q".

Applying this lemma, we prepare the following estimate for the nonlinear term f for the
case N > 2.

Lemma2.2 Let N > 2 and m > 0. Suppose that, for any q € [2,00), the function u €
C (Rﬁ x (0, 00)) satisfies the condition

sup 124 |u(1)| 4 < {r(%+1)}5m. (2.19)

t>0
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Let f be the function satisfying the condition (1.9), and put

2N
=— 2.20
p2i= > (2.20)

Then, for all r € [pa, 00), there exists a positive constant ¢ = &(r,)) > 0 such that, if
m < g, then

sup 1% | f ()l < Crm'* ¥, 2.21)

t>0

where C is independent of r, N, and m.

Proof For any k € N U {0}, we put

2
by i =2k+1+ —. 2.22
k +1+ N (2.22)

Then, since it holds from N > 2 and r > p> with (2.20) that

or > (142 (1422, k e NU {0}
K> N )P = N)vi2=2 :

by (1.9) and (2.19) we have

|f @) < C Z —| (),

1 Lk
Y, o1
< CZ ( (ﬂ + 1) k t 2r m) > 0. (2.23)

Applying Lemma 2.1 with the monotonicity property of the Gamma function I'(¢) for ¢ >
3/2 (see, e.g. [1]), we see that

1
CLrr Lr Y
'l —+1 <CI'{—+1 2
<2+) <2+>’

—crfes 4]
= 2" N)"

S

0 %
<CI'tk+2)r2 =Ck+Dlr2.
This together with (2.23) implies that

Ak ! : >
fu@)lr <CrF Y MEF DL 0% comdy it Sk + DrmdE, 1> 0.
k=0 k! k=0

Therefore, taking a sufficiently small m < &(r, A) if necessary (e.g. m? < 1/(4Ar)), we get
(rm?) 2w 2

sup 1% | £ (u())| < C oy < 2C(m 21ty < 20rm'tH
>0 (1- )

This implies (2.21), and the proof of Lemma 2.2 is complete. O

Similarly to the case N > 2, we prepare the following lemma, which is the one dimensional
counterpart of Lemma 2.2.
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Lemma 2.3 Letm > 0. Suppose that, for any q € [2, 00), the function u € C(0, o) satisfies
the condition

sup 1% |u(r)| < {r(%+1)}‘%m. (2.24)

t>0

Let f be the function satisfying the condition (1.9). Then there exists a positive constant
e =&(X) > 0 such that, if m < g, then

sup 17| £ (u(®)| < Cm?, (2.25)
t>0
and
1
L+l r ro3
sup 1773 (u(t)| = clr (E 1)} m repoo), (2.26)

where C is independent of m and r.

Proof We first prove (2.25). For any k € N U {0}, let £ be the constant defined by (2.22)
with N = 1, namely, ¢; = 2k 4 3. Then, by (1.9) and (2.24) with ¢ = ¢; we have

Xk Xk ” % “
[fw@) <C E Flu(t)ll“ <C E o (F (5 + 1) t“km) , t>0. (2.27)
k=0 k=0

Since it holds from the monotonicity property of the Gamma function that
Ly 5
r 54-1 =T k+§ =T'k+3)=k+2),

by (2.27) we have

00 Lk 00
fu@) <Ccrz Y %m@k =i Yk + 2k + DOmDE, 1> 0,
k=0 k=0

Therefore, taking a sufficiently small m < e(}) if necessary, we get

3

1 m
12 N <C— <2Cm>.
sup Ifu@®)| < T = a2 = 26m

This implies (2.25).

Next we prove (2.26). For any k € NU {0}, put f = 2k + 2. Then, similarly to the proof
of (2.25), we have

S )\k -
£ )] = Clu)] Y T lu)

k=0
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and then, by (2.24) with ¢ = r and also ¢ = ¢4 and taking a sufficiently small m < &(1) if
necessary, we have

1 123
1 00 .k N 1
[ r Fo_L A Ly R
arf ot <o) 55 (r (50
1 k
r Fo_1 Ak + 1! i
5m{1"<5+1)] 17 27;{!
k=0
3 1 _1_1
§Cm[ (2—1—1)} tmr72, t>0.
This implies (2.26), and the proof of Lemma 2.3 is complete. O

3 Existence

In this section we prove Theorem 1.1. We first consider the case N > 2. We introduce some
notation. Let M > 0. Set

e CRY x (0, 00)) N L>®(0, o0; expLA(RY)) :

sup [lu()llexpr2 < M. sup h()|lu(®)ze < M with h(r) = min{ ¥, 1),
Xy = t>0 t>0 . P

sup 1% |u(t)| e < [r (— n 1)}5 M with g € [2, 00)

t>0 2
equipped with the metric

1
dx(u, v) := sup (h(t)llu(t) —v(@)llzee + 178 |u(t) — v(t)|L2N>- (3.1
t>0

Then (X, dx) is a complete metric space. For the proof of Theorem 1.1 we apply the Banach
contraction mapping principle in X, to find a fixed point of

Ou]() := S1(®)¢ + Dlul(1), (3.2)
where S;(¢) is as in (2.4) and
12
Dlul(t) := /0 So(t —s) f(u(s))ds. 3.3)

Here S>(t) is gin (2.6) and f satisfies (1.9). We remark that, for u € Xy, the function f (u)

belongs to C(Rﬁ % (0, 00)). Therefore, by Lemma 2.2 we have that f (u(-, 0, s)) € L” (RN-1)
with 7 € [p2, 00), and we can define S>(t — s) f (u(s)) for t > s > 0. More precisely, with
an abuse of notation we denote by S»(z — s) f(u(s)) the operator S>(t — s) applied to the
function f(u(x’, 0, s)). In particular, we have

t
Dlul(t) = /0 Sa(t — ) f(u(s)) ds
t
:/0 AN—I 2g1(xn,t — S)gN—l(x’ _ y/’ ‘- s)f(u(y’, 0,5)) dy' ds

t
:// G(x,y,0,t —s)fu(y,0,s))dy ds.
0 JRN-I
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Hence any fixed point of the integral operator & satisfies the equation (1.12).
Furthermore, we have the following estimates for the function D[u].

Lemma 3.1 Let N > 2andu € Xy. Then there exists a positive constant &, = £,(N, 1) > 0
such that, if M < &, then, for any q € [2, 00),

sup <|ID[M](t)IIL2 + [I1D[u](t)l| L~ + t%‘IID[u](Z)Im> < CM'F, (3.4

t>0
where C is independent of g and M. Furthermore, D[u] is continuous in @ x (0, 00).
Proof We first prove (3.4). Let p; be the constant given in (2.20). Then, it holds that
1_E(L_l>_l(l_i>_L:N+2_i:0
2 \pp 2 2 P2 2p> 4 2p>

By (2.11) with (¢, r) = (p2,2) and (3.3) we have

t
DLl < f 150 — ) f (sl 2 ds
0 (3.5)

N

' ~¥E-h-ta-5)
§C/(t—s) oD pus)) | ds, 1> 0.
0

Since u € Xy, taking a sufficiently small &1 = &1(p2, A) > 0 such that, for M < g, we can
apply Lemma 2.2, and it holds that

_
|f @) < CppM\TR 5, 1> 0. (3.6)
Substituting (3.6) to (3.5), we see that

142 ! N L_ Ly L1y L
IOz = Cpam'F [ =5y HTD T g
0

3.7
1+2 1 1
<CM""B|—,1——, t>0,
2p) 2p)
where B is the beta function, namely
B(p,q) =T(p)I'(¢)/T(p+q), p,q>0.
Furthermore, similarly to (3.5), by (2.11) with (¢, r) = (N, oo) and (3.3) we have
d _N-1_ 1
| Dlul(#)|| L < C/ (t—s) 28 2| f(u(s)vds, t>0. (3.8)
0

Since N > 2 > p», similarly to (3.6), taking a sufficiently small ¢ = €3(N, A) > 0 such
that, for M < &, we get

|F@@)ly < CNMTRTw, 150, (3.9)
Substituting (3.9) to (3.8), we see that
t
I DLl < CNMH%/ (t — sy 12— ds
0 (3.10)

1 1
<CMHFB(—.1——). >0
2N 2N
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On the other hand, for fixed ¢ € [2, 00), we put

_ _Na
q*'_N—Fq'
Then, it holds that py < g, < ¢g and
N—-1/1 1 1 1 1 1 1
- =)z ==14 —, — — =——. 3.1D)
2 g« q 2 2N 2N 2gq. 2q

By (2.12) with (¢, r) = (g«, g¢) and (3.3) we have

t
DLl s < f 1S3t — 5) £ (u(s))|1s ds
0 (3.12)

! NSt 1y
§C/(t—s) 2 0 a7 2| f(u(s))|pes ds, t>0.
0

Since py < g4« < N, similarly to (3.6) again, taking a sufficiently small e3 = e3(N, 1) > 0
such that, for M < &3, we have

]+l _.L 1+l _ 1
[ fw@))|pex < CqsM TNt 2ex <CNM TNt 2=, t > 0.
This together with (3.11) and (3.12) yields that

! 1
ID[ul(®)|pe < CM‘+%/ (t — )" "W s "3 ds
0

(3.13)
1+2 ,— 2 1 1 1+2 -5
<CM "~ t Bl —,1—— | <CM "Nt 2, t >0,
2N 2q

where the constant C depends only on N since p» < ¢, < N. Thus, taking &, =
min{ey, &7, &3} with (3.7), (3.10), and (3.13), we obtain (3.4).

Next we prove the continuity of D[u](x, t). Let T be an arbitrary positive constant. Then,
it follows from (2.1) that

t
Dlul(x, 1) = /0 [Sa(r — 5)f (u(s)](x) ds
t
— [S1(t = T/2) DLl(T/2)1(x) + /T S P ds

forx € @ and 0 < T < t < oo. Then, by (3.4) and (G3) we see that
[S1(t = T/2)D[ul(T /2)](x)

is continuous in @ x (T, 00). Furthermore, since it follows from u(t) € Lw(@) for
t > T/2 that f(u(t)) € L“(&Rﬁ) fort > T/2, we apply the same argument as in [9,
Section 3, Chapter 1] to see that

t
/ [S2(t — ) f (u(s))](x) ds
T/2
is also continuous in @ x (T, 00). (See also [7, Proposition 5.2] and [16, Lemma 2.1].)
Therefore we deduce that D[u] is continuous in Rﬁ x (T, 00). Thus Lemma 3.1 follows

from arbitrariness of T'. O
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Lemma3.2 Let N > 2 and u,v € X . Then there exist some positive constants C = C(N)
and e* = &*(N, A) > 0 such that, if M < &*, then

dx (D[ul, D[v]) < CM¥dy (u, v). (3.14)

Proof For any k € N U {0}, we put

~ 2
by =2k + —. 3.15
k —I—N (3.15)
Then, by (1.9) we recall that
|f () — f(v)|<C|u—v|2—<|u|fk+|v|“) (3.16)
k=0

Since h(t) < 1, by (2.11) with (¢, r) = (N, 00), (3.3), and (3.16), for any r > 0, we have

RO D[u](#) — Dv](@) [ L=

t
E/O 1S2(t = $)(f (uls) — fw Lo ds

00 )\'k t _1+L
5C2ﬂ/ ()
k=0 © /0

3.17)

lu(s) — v(s)l(lu(s)lgk T |v(s)|£k>‘ ds.  t>0.
LN

Since it follows from Holder’s inequality that

lu(s) — U(S”(Mmzk + |v<s>|"k>

< lu(s) — v(s)| v (IM(S)I "% v T Iv(S)I L2 N)

LN

by (3.1), (3.15), and (3.17) we see that, for u, v € Xy,
h(@®)||D[u](t) — D[v](®) | Lo

ch T / (=9~ 1+z~|u(s)—v(s)|LzN(|u(s)| L O, N)ds

1 _fik 1
<CZ k' / (t — 1+2N§~ w 4‘ka(sup sW|u(s)—v(s)|LzN)><

s>0

1 b 1 i
X {(sup SN Ju(s)| 2/sz> + <§up s 40N IU(T)|Lzsz> }ds
5s>0 5s>0

o A A Sl L
SCdX(”’U)ZF ' ¢xN +1 M A (t—s) INsT2N ds
k=0 "

1
1 L ( M2)k . brg
< CM7Vdyu, v)B<2N )kX(:) (ekN+1> ., t>0.

(3.18)
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For k = 0, by (3.15) we have I"(EON + 1) = I'(3). Furthermore, applying Lemma 2.1 with
(3.15) and by the monotonicity property of the Gamma function, for k > 1, we see that

w O &
r{&N+1 <Cr ?—i-l (2N)2
=CI'(k+ ! +1 (2N)57k
- N
& &
<CI'(k+2)2N)2 =Ck+ D!2N)2.
These together with (3.18) implies that

h(®) | D[ul(t) — D[v](®)]l L
M 2)"

< CM7Vdy(u, v)z
k=0

(k + 1)'(2N) %

o0
< CNM)Vdx(u,v) Y (k+ D@ANMYE, 1> 0.
k=0

Then, taking a sufficiently small ¢* = ¢*(N, 1) > 0 such that, for M < ¢*, in a similar way
as in Lemma 2.2, it holds that

h(@®)[DIu(t) — D))l < cmd . v)
fgg u v Lo < = ZANMz)z x(u, v

On the other hand, similarly to (3.12), by (2.12) with (¢,r) = ((2N)/3,2N), (3.3), and
(3.16) we have

£3% | D[u](t) — D](0)] 2

t
<t /0 1500 — $)(Fu(s)) — F () pox ds
o0 .k t

v s, t > 0.

L3

w1 |uds) — v(s>|<|u<s)|"k + |v(s>|"k)

Therefore, applying the same argument as in the proof of (3.19), for M < &*, it holds that

£3% | D[u](t) — D[](1)] 2

X ok ot i ()
1 A _1+L € £
< Ctw % E/o (t — )72 Ju(s) — v(s)|on <|M(S)|Lksz OIS, ) ds
~ 1 7
W (BN NGw A\ [ ~
< Cravdy (u, v) Z < ( ot 1>ekNM) / - sTHﬁS—% &
2 0

1 3\ —
< C(NM?)Vdyx(u, v)B<2N 1— W) ;)(k + DANM?HE

< CMVdy(u,v), t>0.
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This implies that

sup 17 | D[u](r) — D[v](t)] ;v < CM ¥ dy (u, v). (3.20)
t>0
Combining (3.19) and (3.20), we have (3.14), thus Lemma 3.2 follows. ]

Remark 3.1 In the proof of Lemma 3.2, the estimate for sup,_¢!/*N)| .| 2y is closed by
itself. We need the term sup,_ 2 (¢)|| - ||z~ in the definition of the metric dx in order to
ensure the uniform convergence of the Cauchy sequence so that the solution is continuous.

Now we are ready to complete the proof of Theorem 1.1 for the case N > 2.

Proof of Theorem 1.1 (N > 2). Let
M := 6 max{l, c1, c2}|@llexpr2

where c¢1 and ¢, are constant given in (G1). Then, by (2.8), (2.9), (2.17), and (2.18) we see
that

N
sup t# ||S1(DellLe <

t>0

sup ”Sl (t)(/)”expl,2 <

t>0

M M
2’ 2’
1 (3.21)
sup 1% 1510lis < [0 (241)}7 2. g ez o0,
t>0 2 2

Let u € Xy . Then, by Lemma 3.1 with (2.16) we can take a sufficiently small ¢4 =
€4(N, 1) > 0 such that, for M < g4, it holds CM*/N < 1/2 and so

M
sup [ D[ul(Dllexpr2 < = sup IDul@®lre < —,
>0 2 >0 2

L q é M
sup 124 | D[u](t)| e < {r (5 + 1)} S el

t>0

This together with property (G3), Lemma 3.1, (3.2), and (3.21) yields that ® is a map on Xy
to itself. Furthermore, since it follows from (3.1) and (3.2) that

dx (®[u], ®[v]) = dx(D[u], D[v])

foru, v € Xy, taking a sufficiently small 5 = ¢5(N) > 0 if necessary, for M < €5, we can
apply Lemma 3.2, and it holds that

dx (®[u], ®[v]) < %dx(u, v).

Then, applying the contraction mapping theorem ensures that there exists a unique u € Xy
with

u=eu]@)=S1"¢+ Dul) in Xpy.
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Thus we see that « is the unique global-in-time solution of problem (1.12) satisfying (1.14)

and (1.15). Furthermore, by the same argument as in the proof of [14, (1.7)] with Lemma 3.1,

we can prove that u(z) —>0 @ in the weak™® topology, and the proof of Theorem 1.1 for the
t—

case N > 2 is complete. O

Next we consider the case N = 1. Similarly to the case N > 2, let M > 0, and we set

u € C([0, 00) x (0, 00)) N L0, oo; expL2(0, o0)) :

sup [[u()llexprz =M, sup h(D)|lu(@®)|lpe =M with h(r) = min{t4, 1),
Yu = t>0 t>0

1
1 '
sup 1% [u(0, 1)| < [I‘ (% 4 1)}" M with ¢ € [2,00)

t>0

)

equipped with the metric

dy(u, v) ;= sup <h(t)||u(t) —v(t)|| Lo + tk lu(0, 1) — v(0, t)|). (3.22)

t>0

Then (Y, dy) is a complete metric space. Similarly to the proof of Theorem 1.1 for the case
N > 2, we apply the Banach contraction mapping principle in Y, to find a fixed point of

Wlul(t) := Si(t)g + Dlul(2),

where
t
D[u](x, 1) = 2/ g1(x,t —s)f(u(0,s))ds, x €][0,00). (3.23)
0

Here g1 is as in (1.10) and f satisfies (1.9).
Applying Lemma 2.3, we have the following.

Lemma 3.3 Let u € Yy. Then there exists a positive constant €, = €4(X) > 0 such that, if
M < &y, then, for any q € [2, 00),

sup (né[u](r)an +h(f)||5[u](l)||L°°> <CM?, (3.24)
1>

2D q 740
sup 121 | Dlu](0, )| < € {F (2 n 1) M3, (3.25)

where C is independent of q¢ and M. Furthermore, D[u] is continuous in [0, 00) x (0, 00).

Proof By (2.7) with (N, r) = (1, 2) and (3.23) we have

_ t
I D[ul®)l 2 < 2/ lg1(t — )l 2| f (0, 5))| ds
0 (3.26)

t 1
< c/ (t =) 4 f @O, s)lds, 1> 0.
0
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Since u € Yy, taking a sufficiently small e, = &,(A) > 0 such that, for M < &, we can
apply Lemma 2.3, and it holds from (2.26) with r = 2 and (3.26) that

i ' 31
D)D)l > < CM3/ (t—s) 45 ids < CM?B (Z’ Z)’ t>0. (327
0

Similarly, by (2.7) with (N, r) = (1, 00), (2.26), and (3.23), for any g € [2, 00), it holds that

t
|Blul(x, 1)) < C/ (t =) £, )\ ds
0

1
gc{r( 1 "M3/(z—s) bgm2t gs

! 11

)l
gc{r(%ﬁ)}"l {() /Ol/zs‘zlq‘idw(;)_zq_z/t/;(t—s)%ds}
)

2%
5C{F(%+1] M3t 24(1' 2% )
_q

1
q 4 a3 =5
5C{F(2+1>} M35, xef0,00), t>0,
where C is independent of ¢ and M. This implies that
h(®) | Dlu)(t) | = < CM?,
1
~ - 1
| D[] (0, 1)| 5C{F(%+1)}" M3 %, 1> 0. (3.28)

Thus, by (3.27) and (3.28) we obtain (3.24) and (3;25). Furthermore, applying the same
argument as in the proof of Lemma 3.1, we see that D[«] is continuous in [0, c0) x (0, 00),
and the proof of Lemma 3.3 is complete. O

Lemma3.4 Let u,v € Yy. Then there exists a positive constant e* = ¢*(\) > 0 such that,
if M < &% then

dy (D[ul, D[v]) < CM?dy (u, v), (3.29)

where C is independent of M.

Proof For any k € N U {0}, let fk be the constant defined by (3.15) with N = 1. Then,
similarly to (3.18), by (2.7) with (N, r) = (1, 00), (3.16), (3.22), and (3.23), for u, v € Yy,
we have

|D[u](x, 1) — D[v](x, 1)]

t
< c/o (1 — ) H (0, ) — £(O, )] ds

X sk pt - -
<Ccy %/ (t — )" u(0, 5) — v(0, s)|<|u(0, )% + |v(0, s)lz") ds
k=0 Y0

© sk pt Lol G
SCZ*/(t—s)—fs 72 (sup s4[u (0, 5) — v(0, )|
=k Jo

s>0
. & € &
X {(sup s 2% |u(0, s)|> + (sup s 2% |v(0, s)|> }ds
s>0 s>0
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X 4k
dey(u,v)Z%<l“<EZk ) ) /(t—s) 357 ds
k=0 "

11 AMHK
< CM*t~idy(u, v)B<2 4)2( k.) Tk +2)

< CM2t dy(u, v) Z(k +1)OMAE, xe0,00), t>0.
k=0

Then, we can take a sufficiently small £* = ¢*(1) > 0 such that, for M < &*, it holds that

sup h()| DIul(t) — DIt L < CM>dy (u, v),
>

sup 1% D[ul(0, 1) — D[]0, )] < CM3dy (u, v).
t>0

This implies (3.29), thus Lemma 3.4 follows. O

Proof of Theorem 1.1 (N = 1). By Lemmata 3.3, 3.4, and applying the same arguments as in
the proof of Theorem 1.1 for the case N > 2, we can prove Theorem 1.1 for the case N = 1.
O

4 Slowly decaying initial data

In this section we prove Theorem 1.2. Similarly to Sect. 3, we first consider the case N > 2.
Let u be the unique solution to problem (1.1) satisfying (1.14) and (1.15). Put

v(x,t) :=ulx,t+1). “4.1)
Then, it follows from (1.12) and (2.1) that the function v satisfies
v(t) = Si(Ou(l) + Dv](®), >0, (4.2)
where D[v] is the function defined by (3.3). Since it follows from (1.14) and (2.17) that
lu(DllLe < cxll@llexpr2. g € [2, 001, (4.3)
by (2.9) with ¢ = r, for any g € [2, oo], we have
1S1Oulz0 < et 5 u(Dllps < caeat” H lgllogpr2s 1> 0. (44)

Here c, is a constant independent of ¢ and ||¢ lexpr2- Furthermore, since it follows from the
continuity of the function D[u](x, t) that | D[u](t)|ro < ||D[u](t)| L, applying the same
argument as in the proof of Lemma 3.1 with (1.15) and (4.1), we see that, for any ¢ € [2, o],

|DIvI(0)] e < C1 % el t>0. (4.5)

expL2 ’

Then, we can take a sufficiently small ¢ > 0 such that, for ||¢|| expl? < & it follows from
(4.2), (4.4), and (4.5) that

_ L
v()lrs = 2crext % [|@llexpr2s t>0. (4.6)

On the other hand, we have the following.
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Lemmad4.1 Let N > 2, T > 0, and A > 0. Suppose that, for any q € [2, 00], the function
ve CRY x (0, 00)) satisfies
ﬂ(l_l) €1
sup (141622 a't2|v(t)|pe < A. 4.7)
0<t<T

Let f be a function satisfying (1.9). Then, there exists e, > 0, independent of T, such that,
if A < gy, then, for any r € [pa, 00],

Nl_lyyl 1 1+2
sup (140 T D 2% | f) <2CfATTN, (4.8)
0<t<T
where Cy and p; are given in (1.9) and (2.20), respectively.

Proof Letk € NU {0} and £} be the constant given in (2.22). Then, for any r € [p>, co], by
(1.9) and (4.7) we have

|f @) < Cy Z —|v<z>|w

Ly
A Nl 1y L
<cpd jﬁ<(1+r) G, WA)

ee}

(4.9)

We can take a sufficiently small ¢, = €,(X) > 0 so that, for A < &,, it holds that
.k
A
) FAZk = <2 (4.10)

This together with (4.9) implies (4.8). Thus Lemma 4.1 follows. ]
Now we are in position to prove Theorem 1.2 for the case N > 2.

Proof of Theorem 1.2 (N > 2). Following the idea of the proof of [20, Lemma 2.4], we prove
this theorem.

Let u be a unique solution to problem (1.1) satisfying (1.14) and (1.15), and let v be
the function defined by (4.2). Then, applying arguments similar to that in the proof of [20,
Lemma 2.1] with (4.6), we see that

v e C((0,00); LYORY)), ¢ e[2,00] 4.11)

Let [|¢lexpr2 be a sufficiently small to be chosen later. Put

25

1)

1
Vel expr- (4.12)

and

T = sup{O <s§s<o00; [v(t)|pg <2c8(1+1) t 2‘1 forallg € [2, c0]and0 < 1 < v}
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where ¢, and c¢; are given in (4.3) and (2.9), respectively. Then, by (4.6) and (4.12) we have
T>1.

We prove 7' = oo. The proof is by contradiction. We assume that 7 < oo. Then, by (4.11)
we see that
N ( 1

[0(T) e = 2¢28(1 +T) 227 a) 772, 4.13)
On the other hand, by (2.9) with (¢, r) = (2, q), (4.3) and (4.12) we have

11y 1

_N
ISHTu(Dpe < 2T~ 2272734 lu(D)] 2
ﬂ(l_l) _E(l_L) _1
<2270+ T) 7270 T % eyl expr2 (4.14)

77777 1

1
<es(1+T) 22 177,

Furthermore, by the definition of 7', taking a sufficiently small [|¢ ||y 2 if necessary, we can
apply Lemma 4.1, and it holds that, for any r € [p;, o],

Nl_Lyyl L 1+2
sup (1L+n)2 2772 [ f(u()|rr < 2Cp(2¢28) TN, (4.15)
0<t<T

where C r and p» are given in (1.9) and (2.20), respectively. Let D[v] be the function defined

by (3.3). Then, we put
T/2 T
(/0 +/T/2)|52(T—S)f(v(3))|m ds @16)

:1/(T) + I(T).

For the term /1, since T > 1 and N(1/2 — 1/p>2) = —1, by (2.12) with (¢, r) = (p2, g) and
(4.15) we obtain

IDI(T)|La

IA

T2 CNSL(L 1y 1
Il(T)SC/ (T =) T B 07 £ (u(s)) 1 dis
0

D 2 W S S R L 4.17)
<CsNTT T T 2/ s 2 ds
0

where Dj is a positive constant independent of ¢ and §. Furthermore, for the term /5, since
T > 1,by (2.12) with ¢ = r and (4.15) we have

T 1
h(T) < c/ (T = )£ ()1 ds
T2

w2 [T 1 N1y 1 1
< csttw (T—5)"2(14+s) 2274725 % dg
T/2 (4.18)
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where D> is a positive constant independent of ¢ and §. Then, combining (4.17) and (4.18),
we see that
N /1

IDVI(T) |14 < (Dy + D8R (1+7) 22775, (4.19)

Taking a sufficiently small [[¢|[cyp; 2 if necessary, we have

(D1 + Dz)(s% < 0.
This together with (4.2), (4.14), and (4.19) implies that

77777 1

N /1 1
(T za < [SU(T)u()|za + D(T)]|za < 2e28(1 +T) 227077 2%,

This contradicts (4.13), and we see T = oco. Therefore, for any ¢ € [2, oo], it holds that

N1 1 1
W(O)|e <2e28(1+1) 2270 2%, >0, (4.20)
It remains to show that, for any ¢ € [2, oo],
,E(l,l)
lv@llpe <Cét 22 a7, t>0. 4.21)
By (2.8), (4.3), and (4.12) we see that
_ﬂ(l_l) _ﬂ(l_l)
I1S1@u(Dllpe < Cr 272 ' flu(Dllp2 < Cor 272 a7, 1>0. (4.22)

On the other hand, by (4.20), similarly to (4.15), it holds that, for any r € [p2, oc],
F)|r < C81+0~ 2@ D=5, >0, (4.23)
Similarly to (4.16), by (3.3) we put

/2 t
DIl < / 1S2(t — ) f(v(s)llLa ds +/ 1S2(t — ) f(v(s)llLa ds
0 1)2 (4.24)
=: J1(t) + J2(1), t > 0.
Then, for the term Ji, it holds from (2.11) with (g, r) = (p2, g) and (4.23) that
1/2 _NL_Ly_ 1L,
nw ¢ [ - FEHETR ) ds
0
2
< o Hmm0m [Ty i g
0

N1 1 1 t 1
fcat‘7(f‘6>‘1+%/ s ds <Co D, 0.

0
(4.25)
Furthermore, for the term J>, by (2.11) with ¢ = r and (4.23) we have
' —fa-h
@) =C | (t—s) 2 | f(v(s))Lads
/2
! _la-1 SNyl L
<Cé (t—s) 20 @(1+s) 22 ¢/ 25 2ads
12
Aoy i P gy N (L1
§C8(1+t)22‘1t22'1/s2 ’ds <C8(1+1t) 22747, t > 0.
0 (4.26)
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Then, combining (4.24), (4.25), and (4.26), we see that

_E(l_l)
ID[v]llpe <C8t 2274,  t>0.

This together with (4.2) and (4.22) yields (4.21). Therefore, by (4.1), (4.20), and (4.21) we
have (1.16), and the proof of Theorem 1.2 for the case N > 2 is complete. m}

We next consider the case N = 1. Let v be the function defined by (4.1). Then, it follows
from (1.13) and (2.1) that the function v satisfies

v(®) = S (Hu(l) + Dv]Q@), t >0, 4.27)
where D[v] is the function defined by (3.23). Then, by (2.10) and (4.3) we have

_1 _1
ILS1@OuMIO)] < cat™# lu(Dll 2 < dut™ [ @llexpr2, 1> 0. (4.28)
Here d, is a constant independent of || ||¢x, 2. Furthermore, similarly to (4.5), applying the

same argument as in the proof of Lemma 3.3 with (1.15) and (4.1), we see that

~ 1
D10, D] < Cr™4lgll} 20 1> 0. (4.29)

Then, we can take a sufficiently small ¢ > 0 such that, for ||¢|| expl? < & it follows from
(4.27), (4.28), and (4.29) that
1
00, )] < 2dut T @llegpr2s 1 > 0. (4.30)

On the other hand, we have the following, which is the one dimensional counterpart of
Lemma 4.1.

Lemma4.2 LetN = 1,T > 0,and A > 0. Suppose that the function v € C(0, 00) satisfying

sup (14 0)Fu(1)] < A. 431
0<t<T
Let f be a function satisfying (1.9). Then, there exists €, > 0, independent of T, such that,
if A < g, then

sup (1413 |f ()] < 2C A3, 4.32)

0<t<T

where C s is constant given in (1.9).

Proof Letk € NU{0} and ¢, be the constant givenin (2.22) with N = 1, namely, ¢; = 2k+3.
Then, by (1.9) and (4.31) we have

> }\.k N )\.k ¢
[fu@)=Cp Y mvol* = ¢y o ((1 +t)’%A) ‘
k=0 " k=0 "

k

>

<A +n1Y ((1+t)—%A)2k (4.33)

k=0

|

=~

k
3 R Y
<CrA¥(1+1) 4ZHA . 1>0.
k=0
This together with (4.10) implies (4.32). Thus Lemma 4.2 follows. O

@ Springer



Partial Differential Equations and Applications (2022) 3:36 Page250f44 36

Proof of Theorem 1.2 (N = 1). Let v be the function defined by (4.27). Then, since l@llexpr?
is sufficiently small, by (4.30), Lemma 4.2, and applying the same argument as in the proof
of Theorem 1.2 for the case N > 2, we can prove that

WO, 0] < CA+ D  @llegpr2s >0, (4.34)
and
lf (O, ) =CA +t)_%||(/)”expL2’ t>0. (4.35)
Let ¢ € [2, oo]. Then, by (2.7) with (N, r) = (1, q), (3.23), and (4.35) we have

- t
ID]()llLe < 2/0 g1z = s)lIzal f(v(0, 5)|ds

4 _l(]_l) _3
< C”gonexpLz (t - S) 2 a’s 4 ds
0

<ct 24 9p l_i_i l loll
= 2 T 2g 4) 1 PlepL?

1

_1 1
<1207 gllgpr2. 1> 0.

This together with (4.22) and (4.27) implies

_lel_1
lo@liLe < Ct 2270 plgpr2. 1> 0. (4.36)

Therefore, by (4.1), (4.34), and (4.36) we have (1.16), and the proof of Theorem 1.2 for the
case N = 1 is complete. O

5 Rapidly decaying initial data

In this section we prove Theorems 1.3 and 1.4. Let

L = ”‘p”expL2 (51)

We can assume, without loss of generality, that L < 1. Let p; be the constant given in (1.18).
For ||¢|l»n > 0, we denote

K :=2 max{l, c1, 2} l@llexpr2nrr (5.2)
and
K :=2 max{1, 1, c2} max{l, el e}, 5.3)
where ¢; and c¢; are given in (G1). Since we assume L < 1 and thanks to (1.17) we have
L<K<K. (5.4)
Then we first show the following lemma, which is analogous to Lemma 4.1.
Lemma5.1 Let N > 2, T > 0, and p € [1, 2). Furthermore let p| be the constant given in

(1.18). Suppose that, for any q € [p1, 0ol, the function u € C(@ x (0, 00)) satisfies

Nl _ 1y, L
sup 1271 T2 |y ()| 0 < DK, (5.5)
0<t<T
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where D is independent of g and K is the constant given in (5.2). Let f be a function satisfying
(1.9). Then forKas in (5.3), there exists a sufficiently large constant Ty = T (K pP1, A, D) >
1 such that if T > T it follows that, for any r € [p3, o<],

L1y, 1,1
sup 12 TR | a0 < 2CH(DK)R, (5.6)
T)<t<T

where C is given in (1.9) and

= max 11, PN (5.7)
b3 "Ny2| '
Proof Let k € N U {0} and ¢, be the constant given in (2.22). Since
Lpr > [ 1+ 2 >
r 7 ’
kr = N p3 = Pi1
for any r € [p3, 00], by (1.9) and (5.5) we have
|f @)l < Cy Z —|u<r>|m,
k=0
X .k Ly
A _E(L_%)_%
<Cy Z T <DKz 2P Gt 2 )
k=0 (5.8)

N L 00 )\'k N 2k
< CHDK) I R 3 o (DKt 2m>
k=0 "

N1 _1y_ 1
< CHDK) TN 2o Z’exp<A(DK)2t m) t>0.

for all + > 0. We can take a sufficiently large constant 77 > 1 such that, for all # > T7, it
holds that

_N
exp(A(DK)zt m) <2.

It is enough to choose

~ ri Pl
MDK)2\ '~V AMDEK)2\ ¥
hz\——) z\—7——] - (5.9
log2 log2
This together with (5.8) implies (5.6). Thus Lemma 5.1 follows. O

Similarly, for the case N = 1, we have the following.
Lemma5.2 Let N =1, T > 0, and p € [1,2). Suppose that the function u € C(0, 00)
satisfies
1
sup t2|u(t)| < DK, (5.10)
0<t<T

where D > 0 and K is the constant given in (5.2). Let f be a function satisfying (1.9). Then,
for K as in (5.3), there exists a sufficiently large constant T, =Ti(K, p, A, D) such that, if
T > T1, then it follows that

sup 17| f(u(t)| < 2C(DK)?, (5.11)
Ti<t<T
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where C ¢ is given in (1.9).

Proof Letk € N U~{0} and ¢ be the constant givenin (2.22) with N = 1, namely, {; = 2k-+3.
Furthermore, let 77 be a sufficiently large constant satisfying (5.9) with (N, p1) = (1, p).
Then, by (1.9) and (5.10) we have

A

0 k . e} )\,k L A
@) = Cp Y- Hhu@I* <Cp 3 00 (pkrr)
k=0 k=0

3 XAk 1\ 2k
< DK7Y o (Dm‘ﬁ)
k=0

3 1
< Cf(DK)3fﬂexp<x(DK)2t7)
3 ~
<2CH(DK*t "7, t>T.
This implies (5.11). Thus Lemma 5.2 follows. ]
Next we prove (1.20) for small times.

Lemma5.3 Let N > 1 and u be the unique solution to problem (1.1) satisfying (1.14) and
(1.15). Suppose ¢ € L? for p € [1,2). Let p1 and K be the constants given in (1.18) and
(5.2), respectively. Then, for any fixed T, > 1, there exists a constant ¢ = &(p1,Tyx) > 0
such that, if L < & (where L is the constant given in (5.1)) then, for any q € [p1, o],

N1 _ 1 1
sup 12 q)<||“(t)||L‘7 + 12 Iu(l‘)lm> <C.K, if N=>2, (5.12)
0<r<2T,
1,1 1 1
sup ﬁ(F—?)(Ilu(t)llm + 12 |u(0, t)l) <CiK, if N=1, (5.13)
0<t<2T,

where C, is independent of q, K, and T,.
Proof We first prove (5.12). Let N > 2. By (1.12) we consider
u(t) = S1()¢ + Dlul(r), (5.14)

where D[u] is the function defined by (3.3). For the linear part, by (2.8), (2.9), and (5.2), for
any g € [py, oo], we have

_Nc1 _ 1
TR P F

t>0. (5.15)

1
1S1®e@llLe +12|S1(H)elre < (c1 +c2)t

N1 1
2(171 q)’

< Kt

For the nonlinear part D[u], let p> be the constant given in (2.20). Then, by (2.11) with
(g.r) = (2N, 00) and (3.3) we see that

t
ID[U) (1) < cf (t =) TH | fu(s)) ovds, 1> 0, (5.16)
0

On the other hand, for r € [p2, 00), by (1.15) and taking a sufficiently small ¢ = ¢(r) > 0,
for L < &, we can apply Lemma 2.2, and it holds that

Fu@)r < CrL 8%, 10, (5.17)
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where C > 0 is independent of », N, and L. Since 2N > p», by (5.16) and (5.17) we obtain

I D[]l oo < cLtR / G- it W as < cLTRTE, <2, (5.18)
Furthermore, since it follows from p € [1, 2) with (1.18)and (2.20)that N(1/p>—1/p1) < 1,
by (2.11) with (g, r) = (p2, p1), (3.3), and (5.17) we have

La-

! _N(L_1y_ lg_1,
IDIIO)ln < C / (0 — )" TEID 05D £ u(s)) o ds

<CL1+N/(, e L L e
(5.19)

<cLtRr TR <o
Similarly, by (2.12) with (g, r) = (p2, p1) we obtain

t N1, 1 1 1
|D[u)(1)] 1 5/ t—s)" 7 P72 f(u(s)) L ds

1+2 ’I(L *) :
<CL ™~ (t P2 2s 22 ds

12 4 L*I(L_L 1
<CL +N[2 2 Yppon’ 2

< CLFv wr T, 7 < 2T,
(5.20)

If we choose L small enough such that
1 l_b 1 _ 1 1 N
T Gy 21'1
max | 7.}, T* LN < T,

then, by (5.4), (5.18), (5.19), and (5.20), for any ¢ € [p1, co], we get
N _ N

. _N N
ID[ul(®)|lLe + 12 |Dlul(t)|re < CLT, ™ <CKT, ™, t<2T.. (521
Since T, > 1, by (5.15) and (5.21), for any g € [p1, oo], we obtain

o N L N
lu()llLe + 12 [u(t)|La SC*K< G )+T 2p1>

N, 1 1
< CyKt 2'rn 47 t <2T,.

where C, is independent of ¢, K, and T,. This implies (5.12).
Next we prove (5.13). Let N = 1. Then, we recall that p; = p. By (1.13) we consider

u(t) = Si(H)¢ + Dlul(t), (5.22)

where D[u] is the function defined by (3.23). For the linear part, by (2.8), (2.10), and (5.2),
for any g € [p, oo], we have

1,1 1
1S10¢llLe < et 2T D gl < K257, 150 (5.23)
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and
1 1
[[S1(®)el0)| < cat” 2 |l@llLr < Kt 2, t>0. (5.24)

On the other hand, by (1.15) and taking a sufficiently small ¢ > 0, for L < ¢, we can apply
Lemma 2.3, and we have

| f(u(0,1)] < CL3t7%, t > 0. (5.25)
Then, for the nonlinear part DI[u], it holds from (2.7), (3.23), and (5.25) that, for any ¢ €
[p, ol

t
IDLu)() 10 < C/O (t =) 207D £ (0, )| ds

! 1 1
§CL3/ (t —s) 2070573 gs (5.26)
0
L (1 11 .
<CLt¥%B|=+—,=- | <CLT; t < 2T..
277242

Similarly, we have

t
|D[u](0, 1)] < C/ (t = )21 f (0, 5))| ds
0

] 5.27)
< CL3/ (t—s)"2s"2ds <CL3, t<2T,.
0
If we choose L < T[l/(4p), then, by (5.4) and (5.26), for any g € [p, oo], we get
- _l(l_l) _l(L_l)
IDul(t)lre <CLT, > " <CKT, >’ *, t<2T,. (5.28)
Furthermore, by (5.4) and (5.27), it holds that
_1 _L
|D[u](0,1)| < CLT, ** <CKT, ", 1t <2T,. (5.29)
Combining (5.23) and (5.28), we have
_1dly o —3(-D) 11y
lu@llpe <CK\(t 27 @ +T, "7 ) <CKr 2p 4’ 1t <2T,.
Similarly, by (5.24) and (5.29), we obtain
1 _.L 1
lu(0, 1)| < CK(fﬂ + T, 2") <CKt 2, t<2T,.
These imply (5.13), thus Lemma 5.3 follows. O

For the case N > 2, applying Lemmata 5.1 and 5.3, we show the decay estimate of
lu(®)|La.

Lemma 5.4 Assume the same conditions as in Lemma 5.3 for the case N > 2. Then, for K
as in (5.3), there exists a positive function F = F(N, p1, K, L) such that, if L < F and L
is small enough, then, for any q € [p1, o],

E(L_l)+L
sup £ 27174 |y ()| 10 < CK, (5.30)
t>0

where C depends only on N.
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Proof Letu be aunique solution to problem (1.1) satisfying (1.14) and (1.15). Then, similarly
to (4.11), applying arguments similar to that in the proof of [20, Lemma 2.1] with (1.15), we
see that

u € C((0, 00); Lq(aRi\_’)), q € [p1,00]. (5.31)

By Lemma 5.3, for any T, > 1, there exists ¢ = &(p1, Tx) such that, if L < ¢, then

N1 1y 1
(D)e < CoKt 2017072 0 <1 <2T,, (5.32)

where C, > 1 is independent of ¢, K and T,. Let us fix T, large enough to be chosen later,
put

N1
7(p

_ 1y 1
T=sup{0<s<oo; lu()|pa <2C«Kt a) T forallqe[pl,oo]and0<t<s}.

Then, since T > 1, by (5.32) we have T > 2T, > 2.
We prove 7' = oo. The proof is by contradiction. We assume that 7 < oo. Then, by (5.31)
we see that

1

_E(L_l)_
lu(T) e = 2C, KT 251072 (5.33)

On the other hand, by (2.9) with (¢, r) = (p1, ¢) and (5.2) we have

%(L N(L l)_

_ 1y 1 _ _ly_ 1
[S1(T@les < T 27 D% gl < CLKT ™21 07, (5.34)
Let 77 be the constant given in Lemma 5.1 with D = 2C,, and let us assume that

T, >T > 1. (5.35)

Furthermore, let /1 and I be functions given in (4.16), and let p, be the constant given in
(2.20). Then, for the term Iy, since T > 2T, by (2.12) with (¢, r) = (p2, q) we get

T T/2 CNSL(L_ 1y 1
nmgc(/ +/ )(T—s) T oD fus) i ds
0 *

=: A(T) + B(T).
(5.36)

Since p1 > pp > land T > 1, due to (1.15) and taking a sufficiently small L if necessary,
we can apply Lemma 2.2 to the term A(7'), and we obtain

N—-1,1 1 1 T, .
0

No1 1y 1 1 Ly N1l 1y 1—-L
Z *7(***)*5T*j(lfﬁ)*j(ﬁfﬁ)]—v* 2p2

(5.37)
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Furthermore, let p3 be the constant given in (5.7). Then, since T, > T and it follows from
p1 < 2 that p» > p3 we can apply Lemma 5.1 to the term B(T'), and we have

B(T)<cT T ) /m KR s TG e g

cxivir bk [t G g

< CKHRT I s / IR ds (5.38)
< CKYRT TG n /ws—%—ﬁ s

+

)

1
where C is independent of ¢, L, K, and T. Moreover, for the term /5, since ¢ > p; > p3
and p; < 2, by (2.12) with ¢ = r and (5.6) we see that

T 1
B = [ @ -9 el ds
T/2

1+2 T _1 1 ~
<CK' W (T —s)"2s 21 a” P 2dg

T/2
1 _E(L_l)_i_ T
<CKY T 2% 7T T (T —s) 2ds
T/2
1 _L+%

where C is independent of ¢, L, K, and T,. This together with (4.16), (5.36), (5.37), and
(5.38) implies that

|[D[ul(T)|re < I1(T) + I(T)
_ 1 _ 141
< D*T’%(Tﬂﬁ)fﬁ(L“r%T: Mo KR, ”‘“), (5.39)

where D, is a constant independent of L, K, and 7. Since p; < 2, we can take a sufficiently
large constant T, > 1 so that

_L_;,_l _L+l o C
DT, " K% <D,T, " 'R7 < = (5.40)
which means
4D, KA\ T-T
N 1 1
Ty > <7* ) LR (5.41)
Ci

This together with (5.35) implies that 7}, depends on 4, K, and p; but not on L. Then we can
also take a sufficiently small constant L so that

j—— C
D.T, PLW < T* (5.42)
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and this means
1

ap,T, N\ Y
L< <*7*) . (5.43)
Cs
By (5.4), (5.39), (5.40), and (5.42) we have
1 N1y L
[D[ul(T)|ra < EC*KT 2 (5.44)

Combining (5.14), (5.34), and (5.44), we see that
[u(T) e < |S1(T)@|La + |Du](®)|La

< (C* + %)KT‘%%‘?‘% <20, KT T,
This contradicts (5.33), and we see T = oo. In order to make clear the dependence of the

choice we made on T, and L, we collect below all the conditions (5.35), (5.41), and (5.43)

AD KR\ T T 4p,T, 7N\ ¥
=T, T,>(—— )" % L<|—/2—]
Cy C.
where T satisfies (5.9) with D = 2C,, namely
AQC R\
T = (i> .
log2

Here C and D; are constants depending at most on N and py. Then we can find a function
F depending on N, pi, K, and A such that the conditions on L can be written as L <
F(N, p1, K, }) and L small enough. Thus Lemma 5.4 follows. O

Similarly, for the case N = 1, applying Lemmata 5.2 and 5.3, we have the following.

Lemma 5.5 Assume the same conditions as in Lemma 5.3 for the case N = 1. Then, for K
as in (5.3), there exists a positive function F = F(p, K, A) such that, if L < F and L is
small enough, then,

1
sup t27 [u(0,1)| < CK,

t>0

where C is independent of p and K.

Proof Applying the same argument as in the proof of Lemma 5.4, we can prove this lemma.
For reader’s convenience, we give it here.

Let u be a unique solution to problem (1.1) satisfying (1.14) and (1.15). Then, similarly
to (5.31), we can easily show that

u(0,1) € C((0, 00)). (5.45)

By Lemma 5.3, for any 7, > 1, there exists ¢ = ¢(p, T,) such that, if L < ¢, then

1
[u(0,1)| < CxKt 27, 0 <t <27, (5.46)

where C > 1 is independent of K and T. Let us fix T large enough to be chosen later, put

1
T = sup{O <5 <00; [u(0,1)] <2C«Kt 2 forall0 <t < s}.
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Then, since Ty > 1, by (5.46) we have T > 2T, > 2.
We prove T = oo. The proof is by contradiction. We assume that 7 < oo. Then, by (5.45)
we see that

1
[u(0,T)| =2CKT 2. (5.47)
On the other hand, by (2.10) with ¢ = p and (5.2) we have

I[S1(T)el(0)] < CzT_ﬁ leller < C.KT™ 7. (5.48)
Let fl be the constant given in Lemma 5.2 with D = 2C,, and let us assume
T,>T > 1. (5.49)
Furthermore, since T > 2T, by (3.23) we put

~ T. T/2 T 1
D 0, 7)) <C T —s) 2 0, d
|BLul(0. T)| < </0 +fT* +fm)( ot swo s

: I1(T) + I(T) + I(T).
Since p > 1l and T > 2T, due to~( 1.15) and taking a sufficiently small L if necessary, we
can apply Lemma 2.3 to the term /;(7'), and we obtain

T,
i(T) < CT*%/ L3s~? ds
0 (5.51)

1 1
< 3T HT 2 DTE < LT BT

Furthermore, since T, > f‘l and p < 2, for the terms fg(T) and i3(T), we can apply
Lemma 5.2, and we have

3

- T2 ;
L(T)<CT™ 2 / K357 % ds
T/2
<CK3T% / 73005 % g

1 T2 1 1
gCK%*ﬂ/ s 2 vds <CK’T 2T, " 7,

and
~ 3 T 1 _3
I(T) < CK (T —s5) 2s 2 ds
T/2
3 _3 T 1 3 _ 1 —L‘F%
<CK’T % (T —s5)"2ds <CK’T =T, " -,
T/2

where C is a constant independent of p, L, K, and T. These together with (5.50) and (5.51)
imply that

- 1 1 141
|D[u](0, T)| < DT 2 <L3T*2” +K3T, 7 2), (5.52)

where D, is a constant independent of L, K, and T. Since p < 2, we can take a sufficiently
large constant T, > 1 so that

_l+l _l_»'_l - C
DT, " *K*<D,T, " *K*< T* (5.53)

@ Springer



36  Page34of44 Partial Differential Equations and Applications (2022) 3:36

which means

1

R\ TT 2\ T
T, > (L)*K )F‘f > (LD*K )ﬁ‘f. (5.54)
* C*

This together with (5.49) implies that T, depends on A, K, and p but not on L. Then we can
also take a sufficiently small constant L so that

Cy

s
D, T2 L* < - (5.55)
and this means
= 1
4D, T, "\ 2
L < (%) . (5.56)
*

By (5.4), (5.52), (5.53), and (5.55) we have
- 1 s
[D[u](0, T)| = EC*KT 2,

This together with (5.22) and (5.48) implies

~ C _L _L
lu(0, TH| < [[S1(T)el(0)] + | D[u](0, T)| < <C* + f) KT % <2C.KT 2.
This contradicts (5.47), and we see T = oo. In order to make clear the dependence of the
choice we made on T, and L, we collect below all the conditions (5.49), (5.54), and (5.56)

1
8 K2\ T-T AN
T. > Ti, T*z<—4D*K )" 2 Ls(L)*T* ) :
Cy *

where T} satisfies (5.9) with (N, p1) = (1, p) and D = 2C, namely

V2N P
7> (A(ZC*K) ) .
log2

Here C, and D, are constants depending at most on p. Then we can find a function F
depending on p, K, and X such that the condition L can be written as L < F(p, K, A) and
L small enough. Thus Lemma 5.5 follows. O

Now we ready to prove Theorem 1.3. We first prove it for the case N > 2.

Proof of Theorem 1.3 (N > 2). Let u be a unique solution to problem (1.1) satisfying (1.14)
and (1.15). Let T be a sufficiently large constant to be chosen later, which satisfies T > Ty,
where T is the constant given in Lemma 5.1 with D = C,. Suppose that L is small enough
such that Lemmata 5.3 and 5.4 hold. Then, by (5.12) and (5.30), in order to prove (1.20), it
suffices to prove the decay estimate of |lu(¢)|[r¢ fort > 2T.

Let p; be the constant given in (1.18) and g € [p1, oc]. For the linear part, by (2.8) with
(g,r) = (p1, q) and (5.2) we have

N 1 1
1S100¢llLe < et 27l < Ke 2070 1> 0, (5.57)
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For the nonlinear part, let J; and J, be functions given in (4.24), and let p, be the constant
given in (2.20). Then, for the term Jp, similarly to (5.36), by (2.11) with (¢, r) = (p2, q) we

put
T t/2 N L1y 1Ly
C(/ +/ )(t—s) Srrzan 2 | f(u(s)) e ds
0 T

= A®)+ B(t), t>2T.

Ji(®)

IA

(5.58)

For the term A (1), since p; > pp > 1,by (1.15) and taking a sufficiently small L if necessary,
we can apply Lemma 2.2, and we have

T
A <CL'F7 2% é)fé(ué)/ e
’ (5.59)

ALy N

=3(1-55) -5

2 11y _ 1
< CL*~¢ P14t 2 (5 731 T " t>2T.

Furthermore, let p3 be the constant given in (5.7). Then, for the term B (t),since T > T,
and py > p3, we can apply Lemma 5.1, and it follows from p, > 1 that

- L1y 1 1 /2 L L1
By < CK‘+%t’%(E’3)’7(1’E)/ s TG gy
T (5.60)
2 N Ly N1y a1y (U2 N1y 1 1
<CckMve 2 T 2 T T2 T s 2T )T T ds, 1> 2T.
T

For p € (p2, 2) (which implies p; = p), since p; < 2, we can choose o1 € (0, 1) satisfying

) {1 | N(l 1)}
O<oj<miny——=, —(———¢.
pr 2 2\p2 pi

Then, by (5.59) and (5.60) we have

1 N

~ N 1 1 1 1
Ay <cLV a2 ) 2 G me) p!

2
m < LWt

and

. N1 1 12 N1 1 1 1 N1 1 1 1
B(t) < CKH—%I—j(E—g)—Ul/ t—i(ﬁ—ﬁ _f(l_ﬁ)+(71s_7(ﬁ_ﬁ)_ﬁ_m ds
T

Nl 1, 1724 1
SCK1+NZ,_2(1” 7 01/ 7 2+mds
T
2 N1 _1y_ 11
<ckWa 2 "'/ s 2T g
T

1 1
OO I T s o7

This together with (5.4) and (5.58) implies that

N1 1 1 N/ 1 1 1 1
I <L 2o plm s og R T2 GO et s o7

Choosing T large enough such that
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namely
1
~2 T I,
T > (Kv)m 2
and L small enough such that
21—y
LNT 2rm <1,
thanks to (5.4) we get
N1 1 N1 1
i) < CL 207 p ok T
N1y g
<CKt ?2'rn 4 t >2T. (5.61)

On the other hand, for p < p», namely p; = p;, we consider two cases, N = 2 and
N > 3. For the case N > 3, since p; € (1, 2), we can choose o7 € (0, 1) satisfying

11

0<02<min{ - =, =
pr 22

Then, by (5.59) and (5.60) we see that

(1

1

P1

)}

1

~ N L1y 1
Ay <cL v 2o dm e m o7,
and
- I /2
B(1) SCKH%t_%(ﬂ_ql)_@f P L RN TR
T
t/2
< CKH—Nt—%(ﬁ—ql)—(fzf s_l’ll %_Hnd
T
o0
<CK1+%I‘¥%‘$)“’2/ s 2Ty
B T
N 1 1 1 1
< ekt 2GS o7
This together with (5.4) and (5.58) implies that
N N

( 1 1

1
Ji(t) < CL+ %2 ey ) G

(L

1 1_ 1
—2)=02 53— 5-+02
q T Pl R

Pq 271 t>2T.
Choosing T large enough such that
KFTImt < RErIate <
and L small enough such that
2 1-5
LNT 2 <1,
thanks to (5.4) we get
1 1 1 1
) < CL G g o R G
N L_1y 4
<CKt ?'pn 1 , t>2T. (5.62)

For the case N = 2, since p; = p> = 1 (which implies p = 1), by (5.59) and (5.60) again

we see that

~ 1 1
Aty <cL} )T,
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and
~ _(L_l) 1/2 3 _(L_l) 1
B(t) < CK*t ™ '7i Q/ sT2ds <CK* ‘mdT2,  t>2T.
T

This together with (5.4) and (5.58) implies that

G} 4 ek~ T8, > 0T

)

Ji(t) < CL*™

Choosing T large enough such that

=
=

KT <KT 2<1
and L small enough such that
LT? <1,
thanks to (5.4) we get
_(L_l) _(L_l) _(L_l)
Jit) <CLt ' ¢ +CKt mn 49 <CKt n 9, t >2T. (5.63)
Therefore, by (5.61), (5.62), and (5.63), for N > 2, we have
_E(L_l)
Jit) < CKt 2 r a7, t >2T. (5.64)

Letus come back to the J,(¢) term. Since T > Ty andg > p; > p3, wecanapply Lemma5.1,
and by (2.11) with ¢ = r and (5.6) we have

t No1 _1 L1
ht) < CKFF [ (=5 2005 362753 g
12
t
< k™R EGTV T E [ -5y g
t/2
Nl _1y_1.1
<CK1+N1‘_2(I71_11)_P1 2 t>2T

Since p; < 2, we can choose 03 > 0 satisfying 0 < 03 < 1/p; — 1/2, and we get

1)_”3 o3

N1 1 N1
Bt < CKHR 2™ < g R TG OTT % s 0T
Choosing T large enough such that
A - N T
KNT™72 <KNT™7 <1,
we have
Nel_1y o3

L) <CKt T'm a2 t>2T. (5.65)
Combining (5.57), (5.64), and (5.65), we obtain

N1
lu@)llpe <CKt 2°r1 a7, t > 2T,

thus (1.20) follows.
Finally we prove (1.21) by the same arguments as in the proof of [10, Theorem 2.2].
Indeed, let p; € (1, 2). By (5.61), (5.62), and (5.65) we have

E(L_l)
t2re Cu@) = SiMelie = o(l), 1 — oco.
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Now, by density, let {¢,} C C3° such that ¢, — ¢ in LP'. Then, by (2.8), it holds that

E(L

_l) ﬂ(i
t2 S ()ella <t?

1 _l) H(L_L)
S0 (@ — @p)lle +H 12000 YIS @nllLa

)

E(L_l _ﬂ(l_l)
<Clog—@ullLrr +Ct>'r1 7t 254 gyl 1

N 1
Ya-
2 ol 1> 0.

<Cll¢ —@nllzrm +Ct
Since p; > 1, this proves that

E(L_L)
2 S (eliLe =o(l), t— oo,

and so
ﬂ(i,l)
t2 4 u(t)||pe = o(1), t— oo.
Thus the proof of Theorem 1.3 for the case N > 2 is complete. O

Next, applying the same argument as in the prof of Theorem 1.3 for the case N > 2, we
prove Theorem 1.3 for the case N = 1.

Proof of Theorem 1.3 (N = 1). Let u be a unique solution to problem (1.1) satisfying (1.14)
and (1.15). Let T be a sufficiently large constant to be chosen later, which satisfies 7 > Tl,
where T is the constant given in Lemma 5.2 with D = C,. Suppose that L is sufficiently
small so that Lemmata 5.3 and 5.5 hold. Then, it is enough to prove the decay estimate of
| D(t) ||z for r > 2T in order to obtain (1.20).

Let g € [p, oo]. Then, similarly to (5.50), by (2.7) and (3.23) we put

c T t/2 t _la-l 0 4
</0 +/T +/f/z>(t_s) 1/ G0, ) ds (5.66)

= J1(t) + L) + (), t>2T.

I Dul(t) |l 1o

IA

For the term Jj, by (1.15) and taking a sufficiently small L if necessary, we can apply
Lemma 2.3, and we have

T
~ 1 1
Ji(t) < CL3t_f“_5)/ 572 ds
0 (5.67)
< CL3t77(%7$)f?(17%)T%, t>2T.
Furthermore, for the term fz (t),since T > Tl, we can apply Lemma 5.2, and it holds that

t/2

~ 1 1 3
Jr(@) < CK3I_7(1_5)/ s 2 ds,
T
12
< CK%‘f(%‘%)f%“‘%)/ s ds, 1=2T
T

For p € (1, 2), we can choose &1 € (0, 1) satisfying

- . 1 11 1
O<oy<min|{———=,=(1—— .
p 22 p
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Then, for ¢t > 2T we have

1,1_1

3 -3d-b —ta-d) [ 3
CK’t 2'r 4t 2 1'/ s 2 ds
T

(5.68)
1/2
<KD “‘/ 5300 g
T
< CK3} Gt
Then, by (5.67) and (5.68) we have
~ ~ 1.1 1 1 1 1.1 1 ~ 1, ~
L)+ by < Ly 25 02070 4 k3G Tt
<3G (L% + 1<3T%‘%+5‘> .
Now, choosing T large enough such that
K272 5t <1€2T%—%+&1 <1
and then L small enough so that
LT} <1
thanks to (5.4) we get
i 7 -13-5H-5
Ji(t) + h(t) < CKt 270, (5.69)
On the other hand, for p = 1, by (5.67) and (5.68) again we see that
~ ~ 1.1 1
@)+ h) < CKi 2570 =0T
This together with (5.69) implies for all p € [1,2)
~ ~ 1.1 1
Ji@t) + (@) < CKt_f(T?), t>2T. (5.70)
For the f3 (1) term, since T > f‘l, we can apply Lemma 5.2, and it holds that
~ 3 ! —la=-1y _3
J3(t) < CK (t—s) 2V da’s 2rds
1/2
3o 1 _la=ly 3_Ll_1y_ 141
< CK’t ? (t—s) 2V a’ds <CK’t 2'p a4’ »P'2, t >2T.
1/2
Since p < 2, we can choose 67 > 0 satisfying 0 < 6, < 1/p — 1/2, and we get
~ 3 -Ld_1y 5 3.ty % 5
J3(t) <CK°t 29 472 <CK’t 29 ¢/ 2T"3, t>2T.
Now, choosing T large enough such that
K2T-% < R1% <1,
we get
~ ,l(l,l),ﬁ
J3(t) <CKt 2p a2, (5.71)
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Combining (5.66), (5.70), and (5.71), we see that

~ 1,1 1
Dlul(t)|e < CK:™ 2% 70t >2T,
I

thus (1.20) follows. Furthermore, applying the same arguments as in the proof of Theorem 1.3
for the case N > 2 with (5.69) and (5.71), we obtain (1.21). Thus the proof of Theorem 1.3
for the case N = 1 is complete. O

Remark 5.1 Similarly to the case of the Cauchy problem for the semilinear heat equation with
(1.7), the nonlinear boundary problem (1.1) with (1.9) has no scaling invariance and the L?
and expL? norms have no relationship between each other. In order to have initial data which
fulfill condition (1.19), let us choose a function ¢ € LP(Rf) N LOO(Rﬁ) with p € [1,2).
Then, by (2.15) we see that ¢ € expLz. Then, let us consider a dilation ¢, (x) = AN/ P (ix)
so that [|@xlls = ll@llzr. Since llgxll 2 = ANV/P=1Dg]| > and @]l = AV/P @]l 1,
it follows

li < I o) =0.
i S 9 expz2 = Jim (13122 + 2 l1)

A—>

This implies that there is & > 0 so that ¢, fulfills condition (2.4), even though its L? norm
might be large.

In the end of this section we prove Theorem 1.4. In the following Lemmata, we assume
llu(t)||r« bounded at the origin and decaying at infinity, and we can deduce that also
Il f(u())|lr- is bounded and decays at infinity for r > p3, where p3 is given in (5.7).

Lemma5.6 Let N > 2, p € [1,2), and K > 0. Suppose that u € C(RY x (0, 00)) and for
any q € [p, o0],

N1 1 1
sup(1+02% % [u(t)|4 < CK, (5.72)

t>0

where C is independent of g and K. Let f be a function satisfying (1.9). Then, there is ¢ > 0
depending only on X such that, if K < ¢, then, for any r € [p4, 00],

Yi-Ll L +5
sup (1 +0) 2 p 7 re2 | f(u(n)|r <2Cr(CK) TN, (5.73)
t>0
where Cy is given in (1.9) and
pN
= 1, ——¢. 5.74
12 -

Proof Let k € N U {0} and £, be the constant given in (2.22). Then, since it follows from
(5.74) that

2
ar>(14=)ps=p.
oz (142 )iz
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similarly to (4.9), for any r € [p4, oo], it follows from (1.9) and (5.72) that
[ @@)ler < € Y- Il
k=0

!
Ok Nl 1y _ 1 b
<Cry <<1+r>‘2(ﬂ By (CK))

N_N 2 O Ak N 2k
<CHCK) R+ m T o ((1 + t)‘ﬁ(CK))
k=0 "

1

X Ak
N1t A
< CHCKTFA+0 TG TERO* =0

k=0
(5.75)
We can take a sufficiently small ¢ = ¢(A) > 0 so that, for K < ¢, it holds that
2k 2
> F(CK)zk = MK <o, (5.76)
k=0
This together with (5.75) implies (5.73). Thus Lemma 5.6 follows. O
Lemma5.7 Let N =1, p € [1,2), and K > 0. Suppose u € C((0, 00)) and
1
sup(14+1)2 |u(r)| < CK, 5.77)
t>0

where C is independent of K. Let f be a function satisfying (1.9). Then, there is ¢ > 0 such
that, if K < ¢, then,

sup (1 + 0% | £ ()] < 2C(CK), (5.78)
t>0

where Cy is given in (1.9).

Proof Letk € NU{0}and ¢, be the constant given in (2.22) with N = 1, namely, ¢; = 2k+3.
Furthermore, let ¢ be a sufficiently small constant given in Lemma 5.6. Then, similarly to
(4.33), it follows from (1.9), (5.76), and (5.77) that

k

A
[f@@)] = Cp Y frlu@®
k=0

4k

A _1 %
SCfZF((l-i—t) % (CK))
k=0
3 S M 2% 3 -2
< Cp(CK¥A 41 ZF(CK) <2C/(CKPA+0n77, 1>0.
k=0

This implies (5.78), thus Lemma 5.7 follows. O

Proof of Theorem 1.4. Put K = ||@||cxpr2nz»- Applying the same arguments as in the proofs
of Theorems 1.2 and 1.3 with Lemmata 5.6 and 5.7, we can prove Theorem 1.4. O
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6 Asymptotic behavior

Let us come to the asymptotic behavior of the solution u as stated in Theorem 1.5.

Proof of Theorem 1.5. Let u be the global-in-time solution to problem (1.1) satisfying (1.22).
Furthermore, let ¢ > 0 be a sufficiently small constant chosen later. Then, by (1.22) and
(2.16) we can take a sufficiently large T = T'(e, N) > 0 so that

(M) llexpr2 = CUlu(M)ll 2 + l[u(T)[L=) = CA + Ty % <.

Therefore, applying the semigroup property of the kernel G, namely (2.1), we can assume,
without loss of generality, that ||ng||exp 12aL1 < €.

We first consider the case N > 2. By (1.22), taking a sufficiently small ¢ > 0 if necessary,
and applying the same argument as in the proof of Lemmata 2.2 and 5.1 with p; = p; =
p3 = 1, we have

sup 72 (14 0 f ()] < oo.
>0

Therefore we can define a mass of u(¢) denote by m(¢), that is,

1
m(t) == / @(x)dx +/ f fw(x',0,s)dx"ds, t>0.
RY 0 JRN-I

Furthermore, it holds that

1 1 1
/ / fx',0,s)dx ds = (/ +/ >|f(M(S))|Ll ds
0 JRN-I 0 1

. 6.1)
1 3
§C/ sifds-i-C/ s 2ds <C, t>1.
0 1

This implies that there exists the limit of m(¢), which we denote by m., such that
o0
my = lim m(t) =f (x)dx +/ / f(x',0,s))dx'ds.
=00 RY 0 JRN-I
Furthermore, similarly to (6.1), we obtain

o0
My —m(t) < c/ / Fu,0,5)dx'ds <Ct™%,  t>1.
t RN-1

Therefore, applying an argument similar to the proof of [20, Theorem 1.1] (see also [22])
with (1.22), we have (1.23) for the case N > 2.

Next we consider the case N = 1. By (1.22) and taking a sufficiently small ¢ > 0 if
necessary, we can apply Lemmata 2.3 and 5.2, and we have

sup 12 (1 + 0| £ @(0, 1)) < oo.
t>0

Therefore we can define a mass of u(t) denote by m(t), that is,

[e¢] t
m(t) := / o(x)dx —I—/ fu(0,s))ds, t>0.
0 0

Furthermore, it holds that

t 1 t 1 t
/f(u(O,s))a’s:(/ +/ >|f(u(0,s))|ds§c/ s—%ds+c/ s3ds<C, t>1.
0 0 1 0 1
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This implies that there exists the limit of m (¢), which we denote by m,, such that

My = tlim m(t) = /00 o(x)dx + /OO f(,s))ds,

and it holds that

1

my —m(t) < C/ fu,s)ds <Ct™ 2, t>1.
t

Therefore, applying the same argument as in the proof of (1.23) for the case N > 2, we have
(1.23) for the case N = 1. Thus the proof of Theorem 1.5 is complete. O
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