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Abstract
We consider the initial-boundary value problem for the heat equation in the half space with an
exponential nonlinear boundary condition.We prove the existence of global-in-time solutions
under the smallness condition on the initial data in theOrlicz space expL2(RN+). Furthermore,
we derive decay estimates and the asymptotic behavior for small global-in-time solutions.
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1 Introduction

We consider the initial-boundary value problem for the heat equation in the half spaceRN+ =
{x = (x ′, xN ) ∈ R

N : xN > 0} with a nonlinear boundary condition
⎧
⎨

⎩

∂t u = �u, x ∈ R
N+ , t > 0,

u(x, 0) = ϕ(x), x ∈ R
N+ ,

∂νu = f (u), x ∈ ∂RN+ , t > 0,
(1.1)
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where N ≥ 1, ∂t = ∂/∂t , ∂ν = −∂/∂xN , and ϕ is the given initial data. Here f (u) is the
nonlinearity which has an exponential growth at infinity with f (0) = 0. More precisely, the
condition for the nonlinearity (see (1.9)) covers certain limiting cases which are critical with
respect to the growth of the nonlinearity and the regularity of the initial data. In this paper,
under a smallness condition on the initial data, we prove the existence of global-in-time
solutions to problem (1.1). Furthermore, we derive some decay estimates and the asymptotic
behavior of small global-in-time solutions.

The nonlinear boundary value problem such as (1.1) can be physically interpreted as a
nonlinear radiation law. The case of power nonlinearities f (u) = |u|p−1u with p > 1, that
is,

⎧
⎨

⎩

∂t u = �u, x ∈ R
N+ , t > 0,

u(x, 0) = ϕ(x), x ∈ R
N+ ,

∂νu = |u|p−1u, x ∈ ∂RN+ , t > 0,
(1.2)

has been extensively studied in many papers (see e.g. [5, 6, 11, 13, 17–22, 25, 26] and the
references therein). It is well-known that problem (1.2) satisfies a scale invariance property,
namely, for λ ∈ R+, if u is a solution to problem (1.2), then

uλ(x, t) := λ
1

p−1 u(λx, λ2t) (1.3)

is also a solution to problem (1.2) with initial data ϕλ(x) := λ1/(p−1)ϕ(λx). In the study
of the nonlinear boundary value problem (1.2), it seems that all function spaces invariant
with respect to the scaling transformation (1.3) play an important role. In fact, for Lebesgue
spaces, we can easily show that the norm of the space Lq(RN+) is invariant with respect to
(1.3) if and only if q = qc := N (p−1), and, for the given nonlinearity |u|p−1u, the Lebesgue
space Lqc (RN+) plays the role of critical space for the local well-posedness and the existence
of global-in-time solutions to problem (1.2) (see e.g. [13, 18, 20]).

On the other hand, the case of the Cauchy problem with the power nonlinearity, that is,

∂t u = �u + |u|p−1u, x ∈ R
N , t > 0, u(x, 0) = ϕ(x), x ∈ R

N , (1.4)

also satisfies a scale invariance property, namely, for λ ∈ R+, if u is a solution to problem
(1.4), then

uλ(x, t) := λ
2

p−1 u(λx, λ2t) (1.5)

is also a solution to problem (1.4) with the initial data ϕλ(x) := λ2/(p−1)ϕ(λx). So we can
easily show that the norm of the space Lq(RN ) is invariant with respect to (1.5) if and only
if q = q̃c := N (p − 1)/2, and it is well-known that the Lebesgue space Lq̃c (RN ) plays
the role of critical space for the well-posedness of problem (1.4) (see e.g. [3, 12, 27, 30, 31]
and references therein). Furthermore, the scaling property (1.5) also holds for the nonlinear
Schrödinger equation

i∂t u + �u = |u|p−1u, x ∈ R
N , t > 0, u(x, 0) = ϕ(x), x ∈ R

N , (1.6)

and it is well known that the Sobolev space Hsc (RN ) with sc := N/2 − 2/(p − 1) plays
the role of critical space for the well-posedness of problem (1.6) (see e.g. [4]). From these
results, we have two critical growth rates of the nonlinearity, that is, ph := 1 + (2q)/N
and ps := 1 + 4/(N − 2s), and these two critical exponents are connected by the Sobolev
embedding, Ḣ s(RN ) ↪→ Lq(RN ), where s andq satisfy 0 ≤ s < N/2 and 1/q = 1/2−s/N .
The case sc = N/2 is a limiting case from the following points of view:
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(i) for s > N/2, Hs(RN ) embeds into L∞(RN );
(ii) any power nonlinearity is subcritical, since HN/2(RN ) embeds into any Lq(RN ) space

(for q ≥ 2);
(iii) HN/2(RN ) does not embed into L∞(RN ), and thanks to Trudinger’s inequality [29] one

knows that HN/2(RN ) embeds into the Orlicz space expL2(RN ).

For this limiting case, Nakamura and Ozawa [24] consider the nonlinear Schrödinger equa-
tion with an exponential nonlinearity of asymptotic growth f (u) ∼ eu

2
and with a vanishing

behavior at the origin, and they show the existence of global-in-time solutions under a small-
ness assumption of the initial data in HN/2(RN ).

As a natural analogy to the results of [24], the third author of this paper and Ruf [28]
and Ioku [14] consider the Cauchy problem of the semilinear heat equation with exponential
nonlinearity of the form

f (u) = |u| 4
N ueu

2
(1.7)

and the initial data ϕ belonging to the Orlicz space expL2(RN ) defined as

expL2(RN ) :=
{

u ∈ L1
loc(R

N );
∫

RN

(

exp

( |u(x)|
λ

)2

− 1

)

dx < ∞ for some λ > 0

}

(see also Definition 2.1). They consider the corresponding integral equation

u(t) = et�ϕ +
∫ t

0
e(t−s)� f (u(s)) ds, (1.8)

and prove the existence of local/global-in-time (mild) solutions to this equation (1.8) under the
smallness assumption of initial data in expL2(RN ). Furthermore, the authors of this paper and
Ruf [10] show the equivalence betweenmild solutions (solution to the integral equation (1.8))
andweak solutions to the heat equationwith the nonlinearity f (u) as in (1.7), and derive some
decay estimates and the asymptotic behavior for small global-in-time solutions. The growth
rate of (1.7) at infinity seems to be optimal in the framework of the Orlicz space expL2(RN ).
In fact, if f (u) ∼ e|u|r with r > 2, there exist some positive initial data ϕ ∈ expL2(RN ) such
that problem (1.8) does not possess any classical local-in-time solutions (see [15]). For the
fractional diffusion case and general power-exponential nonlinearities, see e.g. [8, 10, 23].
Furthermore, for ϕ ∈ expL2(RN ), which implies ϕ ∈ L p(RN ) for p ∈ [2,∞), the decay
rate of (1.7) near origin, that is, f (u) ∼ |u|4/Nu, is optimal in the framework of L2(RN ).
See e.g. [3, 30].

The above limiting case in R
N appears from the relationship between ph and ps by the

Sobolev embedding. For problem (1.2),we can easily show that the normof the space Hs(RN+)

is invariant with respect to (1.3) if and only if s = s̃c := N/2− 1/(p − 1), and we have two
critical growth rate of the nonlinearity, that is, p̃h = 1 + q/N and p̃s = 1 + 2/(N − 2s).
These two exponents are also connected by the Sobolev embedding, Ḣ s(RN+) ↪→ Lq(RN+),
where s and q satisfy the same conditions as in the case of RN . This means that the same
limiting case appears for problem (1.2). On the other hand, as far as we know, there are no
results which treat the exponential nonlinearity for the nonlinear boundary problem (1.1).

Based on the above, in this paper, we assume that the nonlinearity f satisfies the following:
there exist C f > 0 and λ > 0 such that

| f (u) − f (v)| ≤ C f |u − v|(|u| 2
N eλu2 + |v| 2

N eλv2)

for every u, v ∈ R, f (0) = 0. (1.9)
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This assumption covers the case

f (u) = ±|u| 2
N ueu

2
,

which is one of the candidates for the optimal growth rate of the nonlinearity in the framework
of the Orlicz space expL2(RN+) and the optimal decay rate near origin in the framework of
L2(RN+) (see e.g. [18]). Following [10, 14, 28], for problem (1.1) with (1.9), we consider the
corresponding integral equation, and prove the existence of global-in-time (mild) solutions
under some smallness assumption of the initial data in expL2(RN+). Furthermore, we obtain
some decay estimates for the solutions in the following two cases

ϕ ∈ expL2(RN+) only (slowly decaying case), and ϕ ∈ expL2(RN+) ∩ L p(RN+) with
p ∈ [1, 2) (rapidly decaying case).
In particular, for the rapidly decaying case p = 1, we show that the global-in-time solutions
with some suitable decay estimates behave asymptotically like suitablemultiples of theGauss
kernel.

Before treating our main results, we introduce some notation and define a solution to
problem (1.1). Throughout this paper we often identify RN−1 with ∂RN+ . Let gN = gN (x, t)
be the Gauss kernel on RN , that is,

gN (x, t) := (4π t)−
N
2 exp

(

−|x |2
4t

)

, x ∈ R
N , t > 0. (1.10)

Let G = G(x, y, t) be the Green function for the heat equation on RN+ with the homogenous
Neumann boundary condition, that is,

G(x, y, t) := gN (x − y, t) + gN (x − y∗, t), x, y ∈ R
N+ , t > 0, (1.11)

where y∗ = (y′,−yN ) for y = (y′, yN ) ∈ R
N+ . Then, we define a (mild) solution to problem

(1.1).

Definition 1.1 Let ϕ ∈ expL2(RN+), T ∈ (0,∞], and u ∈ C(RN+ × (0, T )) ∩
L∞(0, T ; expL2(RN+)).

(i) In the case when N ≥ 2, we call u a solution to problem (1.1) inRN+ ×(0, T ) if u satisfies

u(x, t) =
∫

R
N+
G(x, y, t)ϕ(y) dy

+
∫ t

0

∫

RN−1
G(x, y′, 0, t − s) f (u(y′, 0, s)) dy′ ds (1.12)

for (x, t) ∈ R
N+ × (0, T ) and u(t) −→

t→0
ϕ in the weak∗ topology.

(ii) In the case when N = 1, we call u a solution to problem (1.1) in (0,∞) × (0, T ) if u
satisfies

u(x, t) =
∫ ∞

0
G(x, y, t)ϕ(y) dy +

∫ t

0
G(x, 0, t − s) f (u(0, s)) ds (1.13)

for (x, t) ∈ [0,∞) × (0, T ) and u(t) −→
t→0

ϕ in the weak∗ topology.

In the case when T = ∞, we call u a global-in-time solution to problem (1.1).
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We recall that u(t) −→
t→0

ϕ in weak∗ topology if and only if

lim
t→0

∫

R
N+

(

u(x, t)ψ(x) − ϕ(x)ψ(x)

)

dx = 0

for any ψ belonging to the predual space of expL2(RN+) (see Sect. 2).
In what follows, we denote by ‖ · ‖expL2 the norm of expL2 := expL2(RN+) defined by

(2.14), for r ∈ [1,∞], we write ‖ · ‖Lr := ‖ · ‖Lr (RN+ ) and | · |Lr := ‖ · ‖Lr (RN−1) for

simplicity. Furthermore, for a function φ(x ′, xN ) with x ′ ∈ R
N−1 and xN ∈ [0,∞), we

write |φ|Lr := ‖φ(x ′, 0)‖Lr (RN−1).
Now we are ready to state the main results of this paper. First we show the existence of

global-in-time solutions to problem (1.1) under the smallness assumption of the initial data
in expL2.

Theorem 1.1 Let N ≥ 1 and ϕ ∈ expL2. Suppose that f satisfies (1.9). Then there exist
positive constants ε = ε(N ) > 0 and C = C(N ) > 0 such that, if ‖ϕ‖expL2 < ε, then there
exists a unique global-in-time solution u to problem (1.1) satisfying

sup
t>0

(

‖u(t)‖expL2 + h(t)‖u(t)‖L∞
)

≤ C‖ϕ‖expL2 , (1.14)

where h(t) = min{t N/4, 1}, and for any q ∈ [2,∞),

sup
t>0

t
1
2q |u(t)|Lq ≤ C

{

�
(q

2
+ 1

) } 1
q ‖ϕ‖expL2 , if N ≥ 2,

sup
t>0

t
1
2q |u(0, t)| ≤ C

{

�
(q

2
+ 1

)} 1
q ‖ϕ‖expL2 , if N = 1,

(1.15)

where � is the gamma function

�(q) :=
∫ ∞

0
ξq−1e−ξ dξ, q > 0.

Remark 1.1 (i) By the definition ofRN+ , if N ≥ 2, then the boundary ofRN+ isRN−1, namely,
it is unbounded. On the other hand, if N = 1, then the boundary ofR+ is x = 0, namely,
it is only one point. From these differences, we need to divide the proof into two cases,
N ≥ 2 and N = 1, and we have two estimates as in (1.15).

(ii) Following [15], we denote by expL2
0(R

N+) the closure of C∞
0 (RN+) in expL2(RN+). Then,

by an argument similar to that in the proof of [15, Theorem 1.2], it seems likely to obtain
the existence of local-in-time solutions to problem (1.1) for any ϕ ∈ expL2

0(R
N+) under

the weaker condition

| f (u) − f (v)| ≤ C |u − v|(eλu2 + eλv2) for every u, v ∈ R, f (0) = 0,

where λ > 0 and C > 0. This has not been fully explored and it is left for further
investigation.

From now, we focus on the unique solution u to problem (1.1) satisfying (1.14) and
(1.15). The following result gives some decay estimates for the slowly decaying case, that
is, ϕ ∈ expL2 only.
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Theorem 1.2 Assume the same conditions as in Theorem 1.1. Furthermore, suppose that
there exists a unique solution u to problem (1.1) satisfying (1.14) and (1.15). Then there exist
some positive constants ε = ε(N ) > 0 and C = C(N ) > 0 such that, if ‖ϕ‖expL2 < ε, then
the solution u satisfies

sup
t≥1

t
N
2 ( 12− 1

q )

(

‖u(t)‖Lq + t
1
2q |u(t)|Lq

)

≤ C‖ϕ‖expL2 , if N ≥ 2,

sup
t≥1

t
1
2 ( 12− 1

q )

(

‖u(t)‖Lq + t
1
2q |u(0, t)|

)

≤ C‖ϕ‖expL2 , if N = 1,

(1.16)

for all q ∈ [2,∞].

Remark 1.2 (i) By Theorem 1.1, if ‖ϕ‖expL2 is small enough, then we can show that the
assumption of Theorem 1.2 is not empty.

(ii) We obtain the same decay estimate as the solution to the heat equation in R
N+ with the

homogeneous Neumann boundary condition and initial data in L2. See (G1) in Sect. 2.

Next we consider the rapidly decaying case, that is, ϕ ∈ expL2 ∩ L p with p ∈ [1, 2).
We can prove two kinds of results about decay estimates of solutions to problem (1.1). In
Theorem 1.3, we only assume the smallness condition of the expL2 norm of the initial data.
This means that we can allow the L p norm of the same data to be large. On the other hand,
under this mild assumption, we have an additional restriction about the range of Lq spaces for
the case N ≥ 3. In Theorem 1.4, under a stronger assumption, that is, a smallness assumption
not only for the expL2 but also for the L p norm of the initial data, we obtain better decay
estimates, with no additional restrictions about the range of Lq spaces even for the case
N ≥ 3. In the following we denote for any r ≥ 1

‖ · ‖expL2∩Lr := max{‖ · ‖expL2 , ‖ · ‖Lr }. (1.17)

Theorem 1.3 Assume the same conditions as in Theorem 1.2. Furthermore, assume ϕ ∈
L p(RN+) for some p ∈ [1, 2). Put

p1 := max

{

p,
2N

N + 2

}

. (1.18)

Then there exist some positive constants ε = ε(N ) > 0, C = C(N ) > 0 and a positive
function F = F(N , p1, ‖ϕ‖L p1 , λ) such that, if

‖ϕ‖expL2 < min {ε, F} , (1.19)

then the solution u satisfies

sup
t>0

t
N
2 ( 1

p1
− 1

q )
(

‖u(t)‖Lq + t
1
2q |u(t)|Lq

)

≤ C‖ϕ‖expL2∩L p1 , if N ≥ 2,

sup
t>0

t
1
2 ( 1

p − 1
q )

(

‖u(t)‖Lq + t
1
2q |u(0, t)|

)

≤ C‖ϕ‖expL2∩L p , if N = 1,

(1.20)

for all q ∈ [p1,∞]. In particular, if p1 ∈ (1, 2), then

‖u(t)‖Lq = o

(

t
− N

2 ( 1
p1

− 1
q )

)

, t → ∞. (1.21)
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Theorem 1.4 Assume the same conditions as in Theorem 1.3. Then there exists a positive
constant ε = ε(N ) such that, if ‖ϕ‖expL2∩L p < ε, then (1.20) with p1 = p holds for all
q ∈ [p,∞]. In particular, for all q ∈ [p,∞),

sup
t>0

(1 + t)
N
2

(
1
p − 1

q

)(

‖u(t)‖Lq + t
1
2q |u(t)|Lq

)

≤ C‖ϕ‖expL2∩L p , if N ≥ 2,

sup
t>0

(1 + t)
1
2

(
1
p − 1

q

)(

‖u(t)‖Lq + t
1
2q |u(0, t)|

)

≤ C‖ϕ‖expL2∩L p , if N = 1.

(1.22)

Furthermore, if p ∈ (1, 2) or N ≥ 3, then (1.21) with p1 = p holds.

Remark 1.3 By (1.9) the nonlinearity f (u) behaves like |u|1+2/N for u → 0. So, for the case
N ≥ 2, since it follows from (1.15) that u ∈ L∞

loc(0,∞; Lq(∂RN+)) for q ≥ 2, the nonlinear
term f (u) belongs to L p(∂RN+) for p ≥ (2N )/(N + 2). For the case N = 2, this means
that f (u) ∈ L p(∂RN+) for all p ≥ 1, but this implies a true constraint for the case N ≥ 3.
This is the reason why in Theorem 1.3 we have to introduce some parameters p1 (and p2,
p3, and p4 in Lemmata 2.2, 5.1, and 5.6, respectively) which are meaningful only for the
case N ≥ 3.

Finally we address the question of the asymptotic behavior of solutions to problem (1.1)
when ϕ ∈ expL2 ∩ L1. We show that global-in-time solutions with suitable decay properties
behave asymptotically like suitable multiples of the Gauss kernel.

Theorem 1.5 Let N ≥ 1 and ϕ ∈ expL2 ∩ L1(RN+). Furthermore, let u be the global-in-time
solution to problem (1.1) satisfying (1.22). Then there exists the limit

m∗ := lim
t→∞

∫

R
N+
u(x, t) dx

such that

lim
t→∞ t

N
2 (1− 1

q )‖u(t) − 2m∗gN (t)‖Lq = 0, q ∈ [1,∞]. (1.23)

Remark 1.4 For the case N ≥ 2, by (1.12) we see that

m∗ =
∫

R
N+

ϕ(x) dx +
∫ ∞

0

∫

RN−1
f (u(x ′, 0, t)) dx ′ dt .

On the other hand, for the case N = 1, by (1.13) we have

m∗ =
∫ ∞

0
ϕ(x) dx +

∫ ∞

0
f (u(0, t)) dt .

The paper is organized as follows. In Sect. 2 we recall some properties of the kernel G
and its associate semigroup. In Sect. 3, applying the Banach contraction mapping principle,
we prove Theorem 1.1. In Sects. 4 and 5, modifying the arguments of [20], we derive decay
estimates on the boundary, and prove Theorems 1.2, 1.3, and 1.4. In Sect. 6 we obtain the
asymptotic behavior of solutions to problem (1.1).

2 Preliminaries

In this section we recall some properties of the kernel G = G(x, y, t) and its associate
semigroup. Throughout this paper, by the letter C we denote generic positive constants that
may have different values also within the same line.
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We first recall the following properties of the kernel G (see e.g [13, 20, 22]):

(i)
∫

R
N+
G(x, y, t)dy = 1 for any x ∈ R

N+ and t > 0;

(ii) for any (x, t), (z, s) ∈ R
N+ × (0,∞), it holds that

∫

R
N+
G(x, y, t)G(y, z, s) dy = G(x, z, t + s). (2.1)

By (1.11) we have

gN (x − y, t) ≤ G(x, y, t) ≤ 2gN (x − y, t), x, y ∈ R
N+ , t > 0. (2.2)

Furthermore, it follows from (1.10) and (1.11) that

G(x ′, 0, y, t) = 2g1(yN , t)gN−1(x
′ − y′, t), x ′ ∈ R

N−1, y ∈ R
N+ , t > 0. (2.3)

We denote by S1(t)ϕ the unique bounded solution to the heat equation in R
N+ with the

homogeneous Neumann boundary condition and the initial datum ϕ, that is,

[S1(t)ϕ](x) :=
∫

R
N+
G(x, y, t)ϕ(y) dy, x ∈ R

N+ , t > 0, (2.4)

and denote by et�
′
ψ the unique bounded solution to the heat equation in R

N−1 with the
initial datum ψ , that is,

[et�′
ψ](x ′) :=

∫

RN−1
gN−1(x

′ − y′, t)ψ(y′) dy′, x ′ ∈ R
N−1, t > 0. (2.5)

In the case where N ≥ 2, we put

[S2(t)ψ](x) := 2g1(xN , t)[et�′
ψ](x ′), x ∈ R

N+ , t > 0, (2.6)

for ψ ∈ Lr (RN−1) with some r ∈ [1,∞]. Since it holds that, for any r ∈ [1,∞],
‖gN (t)‖Lr ≤ 4− 1

2r (4π t)−
N
2 (1− 1

r ), t > 0, (2.7)

by (2.2), (2.3), and applying Young’s inequality to (2.4) and (2.5) we have the following.

(G1) There exists a constant c1, which depends only on N , such that

‖S1(t)ϕ‖Lr ≤ c1t
− N

2 ( 1q − 1
r )‖ϕ‖Lq , t > 0, (2.8)

for ϕ ∈ Lq(RN+) and 1 ≤ q ≤ r ≤ ∞. Furthermore, there exists a constant c2, which
depends only on N , such that, for the case N ≥ 2,

|S1(t)ϕ|Lr ≤ c2t
− N

2 ( 1q − 1
r )− 1

2r ‖ϕ‖Lq , t > 0, (2.9)

and, for the case N = 1,

|[S1(t)ϕ](0)| ≤ c2t
− 1

2q ‖ϕ‖Lq , t > 0. (2.10)

(G2) For any ψ ∈ Lq(RN−1) and 1 ≤ q ≤ r ≤ ∞, it holds that

‖S2(t)ψ‖Lr ≤ Ct−
N
2 ( 1q − 1

r )− 1
2 (1− 1

q )|ψ |Lq , t > 0, (2.11)

|S2(t)ψ |Lr ≤ Ct−
N−1
2 ( 1q − 1

r )− 1
2 |ψ |Lq , t > 0. (2.12)
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(G3) Let ϕ ∈ Lq(RN+) with 1 ≤ q ≤ ∞. Then, for any T > 0, S1(t)ϕ is bounded and smooth

in R
N+ × (T ,∞).

We recall now the definition and the main properties of the Orlicz space expL2.

Definition 2.1 We define the Orlicz space expL2 as

expL2 :=
{

u ∈ L1
loc(R

N+);
∫

R
N+

(

exp

( |u(x)|
λ

)2

− 1

)

dx < ∞ for some λ > 0

}

,

(2.13)

where the norm is given by the Luxemburg type

‖u‖expL2 := inf

{

λ > 0 such that
∫

R
N+

(

exp

( |u(x)|
λ

)2

− 1

)

dx ≤ 1

}

. (2.14)

The space expL2 endowed with the norm ‖u‖expL2 is a Banach space, and admits as predual

the Orlicz space defined by the complementary function of A(t) = et
2 − 1, denoted by

Ã(t). This complementary function is a convex function such that Ã(t) ∼ t2 as t → 0 and
Ã(t) ∼ t log1/2 t as t → ∞. (see e.g. [2, Section 8].) Furthermore, it follows from (2.13)
that

L2(RN+) ∩ L∞(RN+) ⊂ expL2, (2.15)

and we have

‖u‖expL2 ≤ 1√
log 2

(‖u‖L2 + ‖u‖L∞). (2.16)

(In the case where � = R
N , see e.g. [15, 23].) On the other hand, it is well known that, for

any 2 ≤ p < ∞,

‖u‖L p ≤
[
�

( p

2
+ 1

)] 1
p ‖u‖expL2 . (2.17)

(See e.g. [15, Proposition 2.1].) Then, applying the same argument as in the proof of [14,
Lemma 2.2] with (2.17), we have

‖S1(t)ϕ‖expL2 ≤ ‖ϕ‖expL2 , t > 0. (2.18)

Next we recall the following property of the Gamma function.

Lemma 2.1 [10, Lemma 3.3] For any q ≥ 1 and r ≥ 1, there exists a positive constant
C > 0, which is independent of q and r, such that

�(rq + 1)
1
q ≤ C�(r + 1)qr .

Applying this lemma, we prepare the following estimate for the nonlinear term f for the
case N ≥ 2.

Lemma 2.2 Let N ≥ 2 and m > 0. Suppose that, for any q ∈ [2,∞), the function u ∈
C(RN+ × (0,∞)) satisfies the condition

sup
t>0

t
1
2q |u(t)|Lq ≤

{
�

(q

2
+ 1

)} 1
q
m. (2.19)
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Let f be the function satisfying the condition (1.9), and put

p2 := 2N

N + 2
. (2.20)

Then, for all r ∈ [p2,∞), there exists a positive constant ε = ε(r , λ) > 0 such that, if
m < ε, then

sup
t>0

t
1
2r | f (u(t))|Lr ≤ Crm1+ 2

N , (2.21)

where C is independent of r , N , and m.

Proof For any k ∈ N ∪ {0}, we put

�k := 2k + 1 + 2

N
. (2.22)

Then, since it holds from N ≥ 2 and r ≥ p2 with (2.20) that

�kr ≥
(

1 + 2

N

)

p2 =
(

1 + 2

N

)
2N

N + 2
= 2, k ∈ N ∪ {0},

by (1.9) and (2.19) we have

| f (u(t))|Lr ≤ C
∞∑

k=0

λk

k! |u(t)|�k
L�k r

≤ C
∞∑

k=0

λk

k!

(

�

(
�kr

2
+ 1

) 1
�k r

t
− 1

2�k r m

)�k

, t > 0. (2.23)

Applying Lemma 2.1 with the monotonicity property of the Gamma function �(q) for q ≥
3/2 (see, e.g. [1]), we see that

�

(
�kr

2
+ 1

) 1
r ≤ C�

(
�k

2
+ 1

)

r
�k
2

= C�

(

k + 3

2
+ 1

N

)

r
�k
2

≤ C�(k + 2)r
�k
2 = C(k + 1)!r �k

2 .

This together with (2.23) implies that

| f (u(t))|Lr ≤ Ct−
1
2r

∞∑

k=0

λk(k + 1)!
k! (rm2)

�k
2 = C(rm2)

1
2 + 1

N t−
1
2r

∞∑

k=0

(k + 1)(λrm2)k , t > 0.

Therefore, taking a sufficiently small m < ε(r , λ) if necessary (e.g. m2 ≤ 1/(4λr)), we get

sup
t>0

t
1
2r | f (u(t))|Lr ≤ C

(rm2)
1
2+ 1

N

(1 − λrm2)2
≤ 2C(rm2)

1
2+ 1

N ≤ 2Crm1+ 2
N .

This implies (2.21), and the proof of Lemma 2.2 is complete. ��
Similarly to the case N ≥ 2,weprepare the following lemma,which is the one dimensional

counterpart of Lemma 2.2.
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Lemma 2.3 Let m > 0. Suppose that, for any q ∈ [2,∞), the function u ∈ C(0,∞) satisfies
the condition

sup
t>0

t
1
2q |u(t)| ≤

{
�

(q

2
+ 1

)} 1
q
m. (2.24)

Let f be the function satisfying the condition (1.9). Then there exists a positive constant
ε = ε(λ) > 0 such that, if m < ε, then

sup
t>0

t
1
2 | f (u(t))| ≤ Cm3, (2.25)

and

sup
t>0

t
1
2r + 1

2 | f (u(t))| ≤ C
{
�

( r

2
+ 1

)} 1
r
m3, r ∈ [2,∞), (2.26)

where C is independent of m and r.

Proof We first prove (2.25). For any k ∈ N ∪ {0}, let �k be the constant defined by (2.22)
with N = 1, namely, �k = 2k + 3. Then, by (1.9) and (2.24) with q = �k we have

| f (u(t))| ≤ C
∞∑

k=0

λk

k! |u(t)|�k ≤ C
∞∑

k=0

λk

k!

(

�

(
�k

2
+ 1

) 1
�k

t
− 1

2�k m

)�k

, t > 0. (2.27)

Since it holds from the monotonicity property of the Gamma function that

�

(
�k

2
+ 1

)

= �

(

k + 5

2

)

≤ �(k + 3) = (k + 2)!,

by (2.27) we have

| f (u(t))| ≤ Ct−
1
2

∞∑

k=0

λk(k + 2)!
k! m�k = Ct−

1
2m3

∞∑

k=0

(k + 2)(k + 1)(λm2)k, t > 0.

Therefore, taking a sufficiently small m < ε(λ) if necessary, we get

sup
t>0

t
1
2 | f (u(t))| ≤ C

m3

(1 − λm2)3
≤ 2Cm3.

This implies (2.25).
Next we prove (2.26). For any k ∈ N∪ {0}, put �̃k = 2k + 2. Then, similarly to the proof

of (2.25), we have

| f (u(t))| ≤ C |u(t)|
∞∑

k=0

λk

k! |u(t)|�̃k
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and then, by (2.24) with q = r and also q = �̃k and taking a sufficiently small m < ε(λ) if
necessary, we have

|u(t)|
∞∑

k=0

λk

k! |u(t)|�̃k ≤ m
{
�

( r

2
+ 1

)} 1
r
t−

1
2r

∞∑

k=0

λk

k!

⎛

⎝�

(
�̃k

2
+ 1

) 1
�̃k

t
− 1

2�̃k m

⎞

⎠

�̃k

≤ m
{
�

( r

2
+ 1

)} 1
r
t−

1
2r − 1

2

∞∑

k=0

λk(k + 1)!
k! m �̃k

≤ Cm3
{
�

( r

2
+ 1

)} 1
r
t−

1
2r − 1

2 , t > 0.

This implies (2.26), and the proof of Lemma 2.3 is complete. ��

3 Existence

In this section we prove Theorem 1.1. We first consider the case N ≥ 2. We introduce some
notation. Let M > 0. Set

XM :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C(RN+ × (0,∞)) ∩ L∞(0,∞; expL2(RN+)) :
sup
t>0

‖u(t)‖expL2 ≤ M, sup
t>0

h(t)‖u(t)‖L∞ ≤ M with h(t) = min{t N
4 , 1},

sup
t>0

t
1
2q |u(t)|Lq ≤

{
�

(q

2
+ 1

)} 1
q
M with q ∈ [2,∞)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

equipped with the metric

dX (u, v) := sup
t>0

(

h(t)‖u(t) − v(t)‖L∞ + t
1
4N |u(t) − v(t)|L2N

)

. (3.1)

Then (XM , dX ) is a completemetric space. For the proof of Theorem 1.1we apply the Banach
contraction mapping principle in XM to find a fixed point of

�[u](t) := S1(t)ϕ + D[u](t), (3.2)

where S1(t) is as in (2.4) and

D[u](t) :=
∫ t

0
S2(t − s) f (u(s)) ds. (3.3)

Here S2(t) is as in (2.6) and f satisfies (1.9). We remark that, for u ∈ XM , the function f (u)

belongs toC(RN+×(0,∞)). Therefore, byLemma2.2wehave that f (u(·, 0, s)) ∈ Lr (RN−1)

with r ∈ [p2,∞), and we can define S2(t − s) f (u(s)) for t > s > 0. More precisely, with
an abuse of notation we denote by S2(t − s) f (u(s)) the operator S2(t − s) applied to the
function f (u(x ′, 0, s)). In particular, we have

D[u](t) =
∫ t

0
S2(t − s) f (u(s)) ds

=
∫ t

0

∫

RN−1
2g1(xN , t − s)gN−1(x

′ − y′, t − s) f (u(y′, 0, s)) dy′ ds

=
∫ t

0

∫

RN−1
G(x, y′, 0, t − s) f (u(y′, 0, s)) dy′ ds.
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Hence any fixed point of the integral operator � satisfies the equation (1.12).
Furthermore, we have the following estimates for the function D[u].

Lemma 3.1 Let N ≥ 2 and u ∈ XM. Then there exists a positive constant ε∗ = ε∗(N , λ) > 0
such that, if M < ε∗, then, for any q ∈ [2,∞),

sup
t>0

(

‖D[u](t)‖L2 + ‖D[u](t)‖L∞ + t
1
2q |D[u](t)|Lq

)

≤ CM1+ 2
N , (3.4)

where C is independent of q and M. Furthermore, D[u] is continuous in R
N+ × (0,∞).

Proof We first prove (3.4). Let p2 be the constant given in (2.20). Then, it holds that

1 − N

2

(
1

p2
− 1

2

)

− 1

2

(

1 − 1

p2

)

− 1

2p2
= N + 2

4
− N

2p2
= 0.

By (2.11) with (q, r) = (p2, 2) and (3.3) we have

‖D[u](t)‖L2 ≤
∫ t

0
‖S2(t − s) f (u(s))‖L2 ds

≤ C
∫ t

0
(t − s)

− N
2 ( 1

p2
− 1

2 )− 1
2 (1− 1

p2
)| f (u(s))|L p2 ds, t > 0.

(3.5)

Since u ∈ XM , taking a sufficiently small ε1 = ε1(p2, λ) > 0 such that, for M < ε1, we can
apply Lemma 2.2, and it holds that

| f (u(t))|L p2 ≤ Cp2M
1+ 2

N t
− 1

2p2 , t > 0. (3.6)

Substituting (3.6) to (3.5), we see that

‖D[u](t)‖L2 ≤ Cp2M
1+ 2

N

∫ t

0
(t − s)

− N
2 ( 1

p2
− 1

2 )− 1
2 (1− 1

p2
)
s
− 1

2p2 ds

≤ CM1+ 2
N B

(
1

2p2
, 1 − 1

2p2

)

, t > 0,

(3.7)

where B is the beta function, namely

B(p, q) = �(p)�(q)/�(p + q), p, q > 0.

Furthermore, similarly to (3.5), by (2.11) with (q, r) = (N ,∞) and (3.3) we have

‖D[u](t)‖L∞ ≤ C
∫ t

0
(t − s)−

N−1
2N − 1

2 | f (u(s))|LN ds, t > 0. (3.8)

Since N ≥ 2 ≥ p2, similarly to (3.6), taking a sufficiently small ε2 = ε2(N , λ) > 0 such
that, for M < ε2, we get

| f (u(t))|LN ≤ CNM1+ 2
N t−

1
2N , t > 0. (3.9)

Substituting (3.9) to (3.8), we see that

‖D[u](t)‖L∞ ≤ CNM1+ 2
N

∫ t

0
(t − s)−1+ 1

2N s− 1
2N ds

≤ CM1+ 2
N B

(
1

2N
, 1 − 1

2N

)

, t > 0.

(3.10)
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On the other hand, for fixed q ∈ [2,∞), we put

q∗ := Nq

N + q
.

Then, it holds that p2 ≤ q∗ < q and

− N − 1

2

(
1

q∗
− 1

q

)

− 1

2
= −1 + 1

2N
,

1

2N
− 1

2q∗
= − 1

2q
. (3.11)

By (2.12) with (q, r) = (q∗, q) and (3.3) we have

|D[u](t)|Lq ≤
∫ t

0
|S2(t − s) f (u(s))|Lq ds

≤ C
∫ t

0
(t − s)−

N−1
2 ( 1

q∗ − 1
q )− 1

2 | f (u(s))|Lq∗ ds, t > 0.

(3.12)

Since p2 ≤ q∗ ≤ N , similarly to (3.6) again, taking a sufficiently small ε3 = ε3(N , λ) > 0
such that, for M < ε3, we have

| f (u(t))|Lq∗ ≤ Cq∗M1+ 2
N t−

1
2q∗ ≤ CNM1+ 2

N t−
1

2q∗ , t > 0.

This together with (3.11) and (3.12) yields that

|D[u](t)|Lq ≤ CM1+ 2
N

∫ t

0
(t − s)−1+ 1

2N s− 1
2q∗ ds

≤ CM1+ 2
N t−

1
2q B

(
1

2N
, 1 − 1

2q∗

)

≤ CM1+ 2
N t−

1
2q , t > 0,

(3.13)

where the constant C depends only on N since p2 ≤ q∗ ≤ N . Thus, taking ε∗ =
min{ε1, ε2, ε3} with (3.7), (3.10), and (3.13), we obtain (3.4).

Next we prove the continuity of D[u](x, t). Let T be an arbitrary positive constant. Then,
it follows from (2.1) that

D[u](x, t) =
∫ t

0
[S2(t − s) f (u(s))](x) ds

= [S1(t − T /2)D[u](T /2)](x) +
∫ t

T /2
[S2(t − s) f (u(s))](x) ds

for x ∈ R
N+ and 0 < T < t < ∞. Then, by (3.4) and (G3) we see that

[S1(t − T /2)D[u](T /2)](x)
is continuous in R

N+ × (T ,∞). Furthermore, since it follows from u(t) ∈ L∞(RN+) for
t ≥ T /2 that f (u(t)) ∈ L∞(∂RN+) for t ≥ T /2, we apply the same argument as in [9,
Section 3, Chapter 1] to see that

∫ t

T /2
[S2(t − s) f (u(s))](x) ds

is also continuous in R
N+ × (T ,∞). (See also [7, Proposition 5.2] and [16, Lemma 2.1].)

Therefore we deduce that D[u] is continuous in R
N+ × (T ,∞). Thus Lemma 3.1 follows

from arbitrariness of T . ��
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Lemma 3.2 Let N ≥ 2 and u, v ∈ XM. Then there exist some positive constants C = C(N )

and ε∗ = ε∗(N , λ) > 0 such that, if M < ε∗, then

dX (D[u], D[v]) ≤ CM
2
N dX (u, v). (3.14)

Proof For any k ∈ N ∪ {0}, we put

�̃k := 2k + 2

N
. (3.15)

Then, by (1.9) we recall that

| f (u) − f (v)| ≤ C |u − v|
∞∑

k=0

λk

k! (|u|�̃k + |v|�̃k ). (3.16)

Since h(t) ≤ 1, by (2.11) with (q, r) = (N ,∞), (3.3), and (3.16), for any t > 0, we have

h(t)‖D[u](t) − D[v](t)‖L∞

≤
∫ t

0
‖S2(t − s)( f (u(s) − f (v(s)))‖L∞ ds

≤ C
∞∑

k=0

λk

k!
∫ t

0
(t − s)−1+ 1

2N

∣
∣
∣
∣|u(s) − v(s)|

(

|u(s)|�̃k + |v(s)|�̃k
)∣

∣
∣
∣
LN

ds, t > 0.

(3.17)

Since it follows from Hölder’s inequality that

∣
∣
∣
∣|u(s) − v(s)|

(

|u(s)|�̃k + |v(s)|�̃k
)∣

∣
∣
∣
LN

≤ |u(s) − v(s)|L2N

(

|u(s)|�̃k
L2�̃k N

+ |v(s)|�̃k
L2�̃k N

)

,

by (3.1), (3.15), and (3.17) we see that, for u, v ∈ XM ,

h(t)‖D[u](t) − D[v](t)‖L∞

≤ C
∞∑

k=0

λk

k!
∫ t

0
(t − s)−1+ 1

2N |u(s) − v(s)|L2N

(

|u(s)|�̃k
L2�̃k N

+ |v(s)|�̃k
L2�̃k N

)

ds

≤ C
∞∑

k=0

λk

k!
∫ t

0
(t − s)−1+ 1

2N s
− 1

4N − �̃k
4�̃k N

(

sup
s>0

s
1
4N |u(s) − v(s)|L2N

)

×

×
{(

sup
s>0

s
1

4�̃k N |u(s)|
L2�̃k N

)�̃k

+
(

sup
s>0

s
1

4�̃k N |v(s)|
L2�̃k N

)�̃k
}

ds

≤ CdX (u, v)

∞∑

k=0

λk

k!
(

�

(

�̃k N + 1

) 1
2�̃k N M

)�̃k ∫ t

0
(t − s)−1+ 1

2N s− 1
2N ds

≤ CM
2
N dX (u, v)B

(
1

2N
, 1 − 1

2N

) ∞∑

k=0

(λM2)k

k! �

(

�̃k N + 1

) 1
2N

, t > 0.

(3.18)
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For k = 0, by (3.15) we have �(�̃0N + 1) = �(3). Furthermore, applying Lemma 2.1 with
(3.15) and by the monotonicity property of the Gamma function, for k ≥ 1, we see that

�

(

�̃k N + 1

) 1
2N ≤ C�

(
�̃k

2
+ 1

)

(2N )
�̃k
2

= C�

(

k + 1

N
+ 1

)

(2N )
�̃k
2

≤ C�(k + 2)(2N )
�̃k
2 = C(k + 1)!(2N )

�̃k
2 .

These together with (3.18) implies that

h(t)‖D[u](t) − D[v](t)‖L∞

≤ CM
2
N dX (u, v)

∞∑

k=0

(λM2)k

k! (k + 1)!(2N )
�̃k
2

≤ C(NM2)
1
N dX (u, v)

∞∑

k=0

(k + 1)(2λNM2)k, t > 0.

Then, taking a sufficiently small ε∗ = ε∗(N , λ) > 0 such that, for M < ε∗, in a similar way
as in Lemma 2.2, it holds that

sup
t>0

h(t)‖D[u](t) − D[v](t)‖L∞ ≤ C
(NM)

2
N

(1 − 2λNM2)2
dX (u, v)

≤ CM
2
N dX (u, v). (3.19)

On the other hand, similarly to (3.12), by (2.12) with (q, r) = ((2N )/3, 2N ), (3.3), and
(3.16) we have

t
1
4N |D[u](t) − D[v](t)|L2N

≤ t
1
4N

∫ t

0
|S2(t − s)( f (u(s)) − f (v(s)))|L2N ds

≤ C
∞∑

k=0

λk

k! t
1
4N

∫ t

0
(t − s)−

N−1
2N − 1

2

∣
∣
∣
∣|u(s) − v(s)|

(

|u(s)|�̃k + |v(s)|�̃k
)∣

∣
∣
∣
L

2N
3

ds, t > 0.

Therefore, applying the same argument as in the proof of (3.19), for M < ε∗, it holds that

t
1
4N |D[u](t) − D[v](t)|L2N

≤ Ct
1
4N

∞∑

k=0

λk

k!
∫ t

0
(t − s)−1+ 1

2N |u(s) − v(s)|L2N

(

|u(s)|�̃k
L �̃k N

+ |v(s)|�̃k
L �̃k N

)

ds

≤ Ct
1
4N dX (u, v)

∞∑

k=0

λk

k!
(

�

(
�̃k N

2
+ 1

) 1
�̃k N

M

)�̃k ∫ t

0
(t − s)−1+ 1

2N s− 3
4N ds

≤ C(NM2)
1
N dX (u, v)B

(
1

2N
, 1 − 3

4N

) ∞∑

k=0

(k + 1)(λNM2)k

≤ CM
2
N dX (u, v), t > 0.
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This implies that

sup
t>0

t
1
4N |D[u](t) − D[v](t)|L2N ≤ CM

2
N dX (u, v). (3.20)

Combining (3.19) and (3.20), we have (3.14), thus Lemma 3.2 follows. ��

Remark 3.1 In the proof of Lemma 3.2, the estimate for supt>0 t
1/(4N )| · |L2N is closed by

itself. We need the term supt>0 h(t)‖ · ‖L∞ in the definition of the metric dX in order to
ensure the uniform convergence of the Cauchy sequence so that the solution is continuous.

Now we are ready to complete the proof of Theorem 1.1 for the case N ≥ 2.

Proof of Theorem 1.1 (N ≥ 2). Let

M := 6 max{1, c1, c2}‖ϕ‖expL2 ,

where c1 and c2 are constant given in (G1). Then, by (2.8), (2.9), (2.17), and (2.18) we see
that

sup
t>0

‖S1(t)ϕ‖expL2 ≤ M

2
, sup

t>0
t
N
4 ‖S1(t)ϕ‖L∞ ≤ M

2
,

sup
t>0

t
1
2q |S1(t)ϕ|Lq ≤

{
�

(q

2
+ 1

)} 1
q M

2
, q ∈ [2,∞).

(3.21)

Let u ∈ XM . Then, by Lemma 3.1 with (2.16) we can take a sufficiently small ε4 =
ε4(N , λ) > 0 such that, for M < ε4, it holds CM2/N < 1/2 and so

sup
t>0

‖D[u](t)‖expL2 ≤ M

2
, sup

t>0
‖D[u](t)‖L∞ ≤ M

2
,

sup
t>0

t
1
2q |D[u](t)|Lq ≤

{
�

(q

2
+ 1

)} 1
q M

2
, q ∈ [2,∞).

This together with property (G3), Lemma 3.1, (3.2), and (3.21) yields that� is a map on XM

to itself. Furthermore, since it follows from (3.1) and (3.2) that

dX (�[u],�[v]) = dX (D[u], D[v])

for u, v ∈ XM , taking a sufficiently small ε5 = ε5(N ) > 0 if necessary, for M < ε5, we can
apply Lemma 3.2, and it holds that

dX (�[u],�[v]) ≤ 1

4
dX (u, v).

Then, applying the contraction mapping theorem ensures that there exists a unique u ∈ XM

with

u = �[u](t) = S1(t)ϕ + D[u](t) in XM .
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Thus we see that u is the unique global-in-time solution of problem (1.12) satisfying (1.14)
and (1.15). Furthermore, by the same argument as in the proof of [14, (1.7)] with Lemma 3.1,
we can prove that u(t) −→

t→0
ϕ in the weak∗ topology, and the proof of Theorem 1.1 for the

case N ≥ 2 is complete. ��

Next we consider the case N = 1. Similarly to the case N ≥ 2, let M > 0, and we set

YM :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C([0,∞) × (0,∞)) ∩ L∞(0,∞; expL2(0,∞)) :
sup
t>0

‖u(t)‖expL2 ≤ M, sup
t>0

h(t)‖u(t)‖L∞ ≤ M with h(t) = min{t 14 , 1},

sup
t>0

t
1
2q |u(0, t)| ≤

{
�

(q

2
+ 1

)} 1
q
M with q ∈ [2,∞)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

equipped with the metric

dY (u, v) := sup
t>0

(

h(t)‖u(t) − v(t)‖L∞ + t
1
4 |u(0, t) − v(0, t)|

)

. (3.22)

Then (YM , dY ) is a complete metric space. Similarly to the proof of Theorem 1.1 for the case
N ≥ 2, we apply the Banach contraction mapping principle in YM to find a fixed point of

�[u](t) := S1(t)ϕ + D̃[u](t),

where

D̃[u](x, t) := 2
∫ t

0
g1(x, t − s) f (u(0, s)) ds, x ∈ [0,∞). (3.23)

Here g1 is as in (1.10) and f satisfies (1.9).
Applying Lemma 2.3, we have the following.

Lemma 3.3 Let u ∈ YM. Then there exists a positive constant ε∗ = ε∗(λ) > 0 such that, if
M < ε∗, then, for any q ∈ [2,∞),

sup
t>0

(

‖D̃[u](t)‖L2 + h(t)‖D̃[u](t)‖L∞
)

≤ CM3, (3.24)

sup
t>0

t
1
2q |D̃[u](0, t)| ≤ C

{
�

(q

2
+ 1

)} 1
q
M3, (3.25)

where C is independent of q and M. Furthermore, D̃[u] is continuous in [0,∞) × (0,∞).

Proof By (2.7) with (N , r) = (1, 2) and (3.23) we have

‖D̃[u](t)‖L2 ≤ 2
∫ t

0
‖g1(t − s)‖L2 | f (u(0, s))| ds

≤ C
∫ t

0
(t − s)−

1
4 | f (u(0, s))| ds, t > 0.

(3.26)
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Since u ∈ YM , taking a sufficiently small ε∗ = ε∗(λ) > 0 such that, for M < ε∗, we can
apply Lemma 2.3, and it holds from (2.26) with r = 2 and (3.26) that

‖D̃[u](t)‖L2 ≤ CM3
∫ t

0
(t − s)−

1
4 s− 3

4 ds ≤ CM3B

(
3

4
,
1

4

)

, t > 0. (3.27)

Similarly, by (2.7) with (N , r) = (1,∞), (2.26), and (3.23), for any q ∈ [2,∞), it holds that

|D̃[u](x, t)| ≤ C
∫ t

0
(t − s)−

1
2 | f (u(0, s))| ds

≤ C
{
�

(q

2
+ 1

)} 1
q
M3

∫ t

0
(t − s)−

1
2 s− 1

2q − 1
2 ds

≤ C
{
�

(q

2
+ 1

)} 1
q
M3

{(
t

2

)− 1
2

∫ t/2

0
s− 1

2q − 1
2 ds +

(
t

2

)− 1
2q − 1

2
∫ t

t/2
(t − s)−

1
2 ds

}

≤ C
{
�

(q

2
+ 1

)} 1
q
M3t−

1
2q

(
2

1
2q +1

1 − 1
q

+ 2
1
2q +1

)

≤ C
{
�

(q

2
+ 1

)} 1
q
M3t−

1
2q , x ∈ [0,∞), t > 0,

where C is independent of q and M . This implies that

h(t)‖D̃[u](t)‖L∞ ≤ CM3,

|D̃[u](0, t)| ≤ C
{
�

(q

2
+ 1

)} 1
q
M3t−

1
2q , t > 0. (3.28)

Thus, by (3.27) and (3.28) we obtain (3.24) and (3.25). Furthermore, applying the same
argument as in the proof of Lemma 3.1, we see that D̃[u] is continuous in [0,∞) × (0,∞),
and the proof of Lemma 3.3 is complete. ��
Lemma 3.4 Let u, v ∈ YM. Then there exists a positive constant ε∗ = ε∗(λ) > 0 such that,
if M < ε∗, then

dY (D̃[u], D̃[v]) ≤ CM2dY (u, v), (3.29)

where C is independent of M.

Proof For any k ∈ N ∪ {0}, let �̃k be the constant defined by (3.15) with N = 1. Then,
similarly to (3.18), by (2.7) with (N , r) = (1,∞), (3.16), (3.22), and (3.23), for u, v ∈ YM ,
we have

|D̃[u](x, t) − D̃[v](x, t)|
≤ C

∫ t

0
(t − s)−

1
2 | f (u(0, s)) − f (v(0, s))| ds

≤ C
∞∑

k=0

λk

k!
∫ t

0
(t − s)−

1
2 |u(0, s) − v(0, s)|

(

|u(0, s)|�̃k + |v(0, s)|�̃k
)

ds

≤ C
∞∑

k=0

λk

k!
∫ t

0
(t − s)−

1
2 s

− 1
4− �̃k

2�̃k

(

sup
s>0

s
1
4 |u(0, s) − v(0, s)|

)

×

×
{(

sup
s>0

s
1

2�̃k |u(0, s)|
)�̃k

+
(

sup
s>0

s
1

2�̃k |v(0, s)|
)�̃k

}

ds
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≤ CdY (u, v)

∞∑

k=0

λk

k!
(

�

(
�̃k

2
+ 1

) 1
�̃k
M

)�̃k ∫ t

0
(t − s)−

1
2 s− 3

4 ds

≤ CM2t−
1
4 dY (u, v)B

(
1

2
,
1

4

) ∞∑

k=0

(λM2)k

k! �(k + 2)

≤ CM2t−
1
4 dY (u, v)

∞∑

k=0

(k + 1)(λM2)k, x ∈ [0,∞), t > 0.

Then, we can take a sufficiently small ε∗ = ε∗(λ) > 0 such that, for M < ε∗, it holds that

sup
t>0

h(t)‖D̃[u](t) − D̃[v](t)‖L∞ ≤ CM2dY (u, v),

sup
t>0

t
1
4 |D̃[u](0, t) − D̃[v](0, t)| ≤ CM2dY (u, v).

This implies (3.29), thus Lemma 3.4 follows. ��
Proof of Theorem 1.1 (N = 1). By Lemmata 3.3, 3.4, and applying the same arguments as in
the proof of Theorem 1.1 for the case N ≥ 2, we can prove Theorem 1.1 for the case N = 1.

��

4 Slowly decaying initial data

In this section we prove Theorem 1.2. Similarly to Sect. 3, we first consider the case N ≥ 2.
Let u be the unique solution to problem (1.1) satisfying (1.14) and (1.15). Put

v(x, t) := u(x, t + 1). (4.1)

Then, it follows from (1.12) and (2.1) that the function v satisfies

v(t) = S1(t)u(1) + D[v](t), t > 0, (4.2)

where D[v] is the function defined by (3.3). Since it follows from (1.14) and (2.17) that

‖u(1)‖Lq ≤ c∗‖ϕ‖expL2 , q ∈ [2,∞], (4.3)

by (2.9) with q = r , for any q ∈ [2,∞], we have
|S1(t)u(1)|Lq ≤ c2t

− 1
2q ‖u(1)‖Lq ≤ c2c∗t−

1
2q ‖ϕ‖expL2 , t > 0. (4.4)

Here c∗ is a constant independent of q and ‖ϕ‖expL2 . Furthermore, since it follows from the
continuity of the function D[u](x, t) that |D[u](t)|L∞ ≤ ‖D[u](t)‖L∞ , applying the same
argument as in the proof of Lemma 3.1 with (1.15) and (4.1), we see that, for any q ∈ [2,∞],

|D[v](t)|Lq ≤ Ct−
1
2q ‖ϕ‖1+

2
N

expL2 , t > 0. (4.5)

Then, we can take a sufficiently small ε > 0 such that, for ‖ϕ‖expL2 < ε, it follows from
(4.2), (4.4), and (4.5) that

|v(t)|Lq ≤ 2c2c∗t−
1
2q ‖ϕ‖expL2 , t > 0. (4.6)

On the other hand, we have the following.
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Lemma 4.1 Let N ≥ 2, T > 0, and A > 0. Suppose that, for any q ∈ [2,∞], the function
v ∈ C(RN+ × (0,∞)) satisfies

sup
0<t≤T

(1 + t)
N
2 ( 12− 1

q )t
1
2q |v(t)|Lq ≤ A. (4.7)

Let f be a function satisfying (1.9). Then, there exists ε∗ > 0, independent of T , such that,
if A < ε∗, then, for any r ∈ [p2,∞],

sup
0<t≤T

(1 + t)
N
2 ( 12− 1

r )+ 1
2 t

1
2r | f (v(t))|Lr ≤ 2C f A

1+ 2
N , (4.8)

where C f and p2 are given in (1.9) and (2.20), respectively.

Proof Let k ∈ N∪ {0} and �k be the constant given in (2.22). Then, for any r ∈ [p2,∞], by
(1.9) and (4.7) we have

| f (v(t))|Lr ≤ C f

∞∑

k=0

λk

k! |v(t)|�k
L�k r

≤ C f

∞∑

k=0

λk

k!
(

(1 + t)
− N

2 ( 12− 1
�k r

)
t
− 1

2�k r A

)�k

≤ C f A
1+ 2

N (1 + t)
N
2r − N

4 (1+ 2
N )t−

1
2r

∞∑

k=0

λk

k!
(
(1 + t)−

N
4 A

)2k

≤ C f A
1+ 2

N (1 + t)−
N
2 ( 12− 1

r )− 1
2 t−

1
2r

∞∑

k=0

λk

k! A
2k, t > 0.

(4.9)

We can take a sufficiently small ε∗ = ε∗(λ) > 0 so that, for A < ε∗, it holds that
∞∑

k=0

λk

k! A
2k = eλA2 ≤ 2. (4.10)

This together with (4.9) implies (4.8). Thus Lemma 4.1 follows. ��
Now we are in position to prove Theorem 1.2 for the case N ≥ 2.

Proof of Theorem 1.2 (N ≥ 2). Following the idea of the proof of [20, Lemma 2.4], we prove
this theorem.

Let u be a unique solution to problem (1.1) satisfying (1.14) and (1.15), and let v be
the function defined by (4.2). Then, applying arguments similar to that in the proof of [20,
Lemma 2.1] with (4.6), we see that

v ∈ C((0,∞); Lq(∂RN+)), q ∈ [2,∞]. (4.11)

Let ‖ϕ‖expL2 be a sufficiently small to be chosen later. Put

δ = 2
N
2 ( 12− 1

q )c∗‖ϕ‖expL2 , (4.12)

and

T = sup

{

0 < s < ∞ ; |v(t)|Lq ≤ 2c2δ(1 + t)
− N

2 ( 12− 1
q )
t
− 1

2q for allq ∈ [2, ∞]and0 < t < s

}

,
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where c∗ and c2 are given in (4.3) and (2.9), respectively. Then, by (4.6) and (4.12) we have
T ≥ 1.

We prove T = ∞. The proof is by contradiction. We assume that T < ∞. Then, by (4.11)
we see that

|v(T )|Lq = 2c2δ(1 + T )
− N

2 ( 12− 1
q )T− 1

2q . (4.13)

On the other hand, by (2.9) with (q, r) = (2, q), (4.3) and (4.12) we have

|S1(T )u(1)|Lq ≤ c2T
− N

2 ( 12− 1
q )− 1

2q ‖u(1)‖L2

≤ 2
N
2 ( 12− 1

q )c2(1 + T )
− N

2 ( 12− 1
q )T− 1

2q c∗‖ϕ‖expL2

≤ c2δ(1 + T )
− N

2 ( 12− 1
q )T− 1

2q .

(4.14)

Furthermore, by the definition of T , taking a sufficiently small ‖ϕ‖expL2 if necessary, we can
apply Lemma 4.1, and it holds that, for any r ∈ [p2,∞],

sup
0<t≤T

(1 + t)
N
2 ( 12− 1

r )+ 1
2 t

1
2r | f (v(t))|Lr ≤ 2C f (2c2δ)

1+ 2
N , (4.15)

where C f and p2 are given in (1.9) and (2.20), respectively. Let D[v] be the function defined
by (3.3). Then, we put

|D[v](T )|Lq ≤
( ∫ T /2

0
+

∫ T

T /2

)

|S2(T − s) f (v(s))|Lq ds

=: I1(T ) + I2(T ).

(4.16)

For the term I1, since T ≥ 1 and N (1/2− 1/p2) = −1, by (2.12) with (q, r) = (p2, q) and
(4.15) we obtain

I1(T ) ≤ C
∫ T /2

0
(T − s)

− N−1
2 ( 1

p2
− 1

q )− 1
2 | f (v(s))|L p2 ds

≤ Cδ1+
2
N T

− N−1
2 ( 1

p2
− 1

q )− 1
2

∫ T /2

0
(1 + s)

− N
2 ( 12− 1

p2
)− 1

2 s
− 1

2p2 ds

≤ Cδ1+
2
N T

− N−1
2 ( 1

p2
− 1

q )− 1
2

∫ T /2

0
s
− 1

2p2 ds

≤ Cδ1+
2
N T− N

2 ( 12− 1
q )− 1

2q

≤ D1δ
1+ 2

N (1 + T )
− N

2 ( 12− 1
q )T− 1

2q ,

(4.17)

where D1 is a positive constant independent of q and δ. Furthermore, for the term I2, since
T ≥ 1, by (2.12) with q = r and (4.15) we have

I2(T ) ≤ C
∫ T

T /2
(T − s)−

1
2 | f (v(s))|Lq ds

≤ Cδ1+
2
N

∫ T

T /2
(T − s)−

1
2 (1 + s)−

N
2 ( 12− 1

q )− 1
2 s− 1

2q ds

≤ Cδ1+
2
N (1 + T )

− N
2 ( 12− 1

q )T− 1
2q

∫ T

0
(T − s)−

1
2 s− 1

2 ds

≤ D2δ
1+ 2

N (1 + T )
− N

2 ( 12− 1
q )T− 1

2q ,

(4.18)
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where D2 is a positive constant independent of q and δ. Then, combining (4.17) and (4.18),
we see that

|D[v](T )|Lq ≤ (D1 + D2)δ
1+ 2

N (1 + T )
− N

2 ( 12− 1
q )T− 1

2q . (4.19)

Taking a sufficiently small ‖ϕ‖expL2 if necessary, we have

(D1 + D2)δ
2
N < c2.

This together with (4.2), (4.14), and (4.19) implies that

|v(T )|Lq ≤ |S1(T )u(1)|Lq + |D[v(T )]|Lq < 2c2δ(1 + T )
− N

2 ( 12− 1
q )T− 1

2q .

This contradicts (4.13), and we see T = ∞. Therefore, for any q ∈ [2,∞], it holds that
|v(t)|Lq ≤ 2c2δ(1 + t)−

N
2 ( 12− 1

q )t−
1
2q , t > 0. (4.20)

It remains to show that, for any q ∈ [2,∞],
‖v(t)‖Lq ≤ Cδt−

N
2 ( 12− 1

q )
, t > 0. (4.21)

By (2.8), (4.3), and (4.12) we see that

‖S1(t)u(1)‖Lq ≤ Ct−
N
2 ( 12− 1

q )‖u(1)‖L2 ≤ Cδt−
N
2 ( 12− 1

q )
, t > 0. (4.22)

On the other hand, by (4.20), similarly to (4.15), it holds that, for any r ∈ [p2,∞],
| f (v(t))|Lr ≤ Cδ(1 + t)−

N
2 ( 12− 1

r )− 1
2 t−

1
2r , t > 0. (4.23)

Similarly to (4.16), by (3.3) we put

‖D[v](t)‖Lq ≤
∫ t/2

0
‖S2(t − s) f (v(s))‖Lq ds +

∫ t

t/2
‖S2(t − s) f (v(s))‖Lq ds

=: J1(t) + J2(t), t > 0.

(4.24)

Then, for the term J1, it holds from (2.11) with (q, r) = (p2, q) and (4.23) that

J1(t) ≤ C
∫ t/2

0
(t − s)

− N
2 ( 1

p2
− 1

q )− 1
2 (1− 1

p2
)| f (v(s))|L p2 ds

≤ Cδt
− N

2 ( 1
p2

− 1
q )− 1

2 (1− 1
p2

)
∫ t/2

0
(1 + s)

− N
2 ( 12− 1

p2
)− 1

2 s
− 1

2p2 ds

≤ Cδt
− N

2 ( 12− 1
q )−1+ 1

2p2

∫ t

0
s
− 1

2p2 ds ≤ Cδt−
N
2 ( 12− 1

q )
, t > 0.

(4.25)

Furthermore, for the term J2, by (2.11) with q = r and (4.23) we have

J2(t) ≤ C
∫ t

t/2
(t − s)−

1
2 (1− 1

q )| f (v(s))|Lq ds

≤ Cδ

∫ t

t/2
(t − s)−

1
2 (1− 1

q )
(1 + s)−

N
2 ( 12− 1

q )− 1
2 s− 1

2q ds

≤ Cδ(1 + t)−
N
2 ( 12− 1

q )t−
1
2− 1

2q

∫ t

0
s− 1

2 (1− 1
q ) ds ≤ Cδ(1 + t)−

N
2 ( 12− 1

q )
, t > 0.

(4.26)
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Then, combining (4.24), (4.25), and (4.26), we see that

‖D[v]‖Lq ≤ Cδt−
N
2 ( 12− 1

q )
, t > 0.

This together with (4.2) and (4.22) yields (4.21). Therefore, by (4.1), (4.20), and (4.21) we
have (1.16), and the proof of Theorem 1.2 for the case N ≥ 2 is complete. ��

We next consider the case N = 1. Let v be the function defined by (4.1). Then, it follows
from (1.13) and (2.1) that the function v satisfies

v(t) = S1(t)u(1) + D̃[v](t), t > 0, (4.27)

where D̃[v] is the function defined by (3.23). Then, by (2.10) and (4.3) we have

|[S1(t)u(1)](0)| ≤ c2t
− 1

4 ‖u(1)‖L2 ≤ d∗t−
1
4 ‖ϕ‖expL2 , t > 0. (4.28)

Here d∗ is a constant independent of ‖ϕ‖expL2 . Furthermore, similarly to (4.5), applying the
same argument as in the proof of Lemma 3.3 with (1.15) and (4.1), we see that

|D̃[v](0, t)| ≤ Ct−
1
4 ‖ϕ‖3expL2 , t > 0. (4.29)

Then, we can take a sufficiently small ε > 0 such that, for ‖ϕ‖expL2 < ε, it follows from
(4.27), (4.28), and (4.29) that

|v(0, t)| ≤ 2d∗t−
1
4 ‖ϕ‖expL2 , t > 0. (4.30)

On the other hand, we have the following, which is the one dimensional counterpart of
Lemma 4.1.

Lemma 4.2 Let N = 1, T > 0, and A > 0. Suppose that the function v ∈ C(0,∞) satisfying

sup
0<t≤T

(1 + t)
1
4 |v(t)| ≤ A. (4.31)

Let f be a function satisfying (1.9). Then, there exists ε∗ > 0, independent of T , such that,
if A < ε∗, then

sup
0<t≤T

(1 + t)
3
4 | f (v(t))| ≤ 2C f A

3, (4.32)

where C f is constant given in (1.9).

Proof Let k ∈ N∪{0} and �k be the constant given in (2.22) with N = 1, namely, �k = 2k+3.
Then, by (1.9) and (4.31) we have

| f (v(t))| ≤ C f

∞∑

k=0

λk

k! |v(t)|�k ≤ C f

∞∑

k=0

λk

k!
(
(1 + t)−

1
4 A

)�k

≤ C f A
3(1 + t)−

3
4

∞∑

k=0

λk

k!
(
(1 + t)−

1
4 A

)2k

≤ C f A
3(1 + t)−

3
4

∞∑

k=0

λk

k! A
2k, t > 0.

(4.33)

This together with (4.10) implies (4.32). Thus Lemma 4.2 follows. ��

123



Partial Differential Equations and Applications             (2022) 3:36 Page 25 of 44    36 

Proof of Theorem 1.2 (N = 1). Let v be the function defined by (4.27). Then, since ‖ϕ‖expL2

is sufficiently small, by (4.30), Lemma 4.2, and applying the same argument as in the proof
of Theorem 1.2 for the case N ≥ 2, we can prove that

|v(0, t)| ≤ C(1 + t)−
1
4 ‖ϕ‖expL2 , t > 0, (4.34)

and

| f (v(0, t))| ≤ C(1 + t)−
3
4 ‖ϕ‖expL2 , t > 0. (4.35)

Let q ∈ [2,∞]. Then, by (2.7) with (N , r) = (1, q), (3.23), and (4.35) we have

‖D̃[v](t)‖Lq ≤ 2
∫ t

0
‖g1(t − s)‖Lq | f (v(0, s))| ds

≤ C‖ϕ‖expL2

∫ t

0
(t − s)−

1
2 (1− 1

q )s− 3
4 ds

≤ Ct−
1
2 ( 12− 1

q )B

(
1

2
+ 1

2q
,
1

4

)

‖ϕ‖expL2

≤ Ct−
1
2 ( 12− 1

q )‖ϕ‖expL2 , t > 0.

This together with (4.22) and (4.27) implies

‖v(t)‖Lq ≤ Ct−
1
2 ( 12− 1

q )‖ϕ‖expL2 , t > 0. (4.36)

Therefore, by (4.1), (4.34), and (4.36) we have (1.16), and the proof of Theorem 1.2 for the
case N = 1 is complete. ��

5 Rapidly decaying initial data

In this section we prove Theorems 1.3 and 1.4. Let

L := ‖ϕ‖expL2 (5.1)

We can assume, without loss of generality, that L < 1. Let p1 be the constant given in (1.18).
For ‖ϕ‖L p1 > 0, we denote

K := 2 max{1, c1, c2}‖ϕ‖expL2∩L p1 (5.2)

and

K̃ := 2 max{1, c1, c2}max{1, ‖ϕ‖L p1 }, (5.3)

where c1 and c2 are given in (G1). Since we assume L < 1 and thanks to (1.17) we have

L ≤ K ≤ K̃ . (5.4)

Then we first show the following lemma, which is analogous to Lemma 4.1.

Lemma 5.1 Let N ≥ 2, T > 0, and p ∈ [1, 2). Furthermore let p1 be the constant given in

(1.18). Suppose that, for any q ∈ [p1,∞], the function u ∈ C(RN+ × (0,∞)) satisfies

sup
0<t≤T

t
N
2 ( 1

p1
− 1

q )+ 1
2q |u(t)|Lq ≤ DK , (5.5)
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where D is independent of q and K is the constant given in (5.2). Let f be a function satisfying
(1.9). Then, for K̃ as in (5.3), there exists a sufficiently large constant T1 = T1(K̃ , p1, λ, D) ≥
1 such that if T ≥ T1 it follows that, for any r ∈ [p3,∞],

sup
T1≤t≤T

t
N
2 ( 1

p1
− 1

r )+ 1
p1

+ 1
2r | f (u(t))|Lr ≤ 2C f (DK )1+

2
N , (5.6)

where C f is given in (1.9) and

p3 := max

{

1,
p1N

N + 2

}

. (5.7)

Proof Let k ∈ N ∪ {0} and �k be the constant given in (2.22). Since

�kr ≥
(

1 + 2

N

)

p3 ≥ p1,

for any r ∈ [p3,∞], by (1.9) and (5.5) we have

| f (u(t))|Lr ≤ C f

∞∑

k=0

λk

k! |u(t)|�k
L�k r

≤ C f

∞∑

k=0

λk

k!
(

DKt
− N

2 ( 1
p1

− 1
�k r

)− 1
2�k r

)�k

≤ C f (DK )1+
2
N t

N
2r − N

2p1
(1+ 2

N )− 1
2r

∞∑

k=0

λk

k!
(

DKt
− N

2p1

)2k

≤ C f (DK )1+
2
N t

− N
2 ( 1

p1
− 1

r )− 1
p1

− 1
2r exp

(

λ(DK )2t
− N

p1

)

, t > 0.

(5.8)

for all t > 0. We can take a sufficiently large constant T1 ≥ 1 such that, for all t > T1, it
holds that

exp

(

λ(DK )2t
− N

p1

)

≤ 2.

It is enough to choose

T1 ≥
(

λ(DK̃ )2

log 2

) p1
N ≥

(
λ(DK )2

log 2

) p1
N

. (5.9)

This together with (5.8) implies (5.6). Thus Lemma 5.1 follows. ��
Similarly, for the case N = 1, we have the following.

Lemma 5.2 Let N = 1, T > 0, and p ∈ [1, 2). Suppose that the function u ∈ C(0,∞)

satisfies

sup
0<t≤T

t
1
2p |u(t)| ≤ DK , (5.10)

where D > 0 and K is the constant given in (5.2). Let f be a function satisfying (1.9). Then,
for K̃ as in (5.3), there exists a sufficiently large constant T̃1 = T̃1(K̃ , p, λ, D) such that, if
T ≥ T̃1, then it follows that

sup
T̃1≤t≤T

t
3
2p | f (u(t))| ≤ 2C f (DK )3, (5.11)
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where C f is given in (1.9).

Proof Let k ∈ N∪{0} and �k be the constant given in (2.22) with N = 1, namely, �k = 2k+3.
Furthermore, let T̃1 be a sufficiently large constant satisfying (5.9) with (N , p1) = (1, p).
Then, by (1.9) and (5.10) we have

| f (u(t))| ≤ C f

∞∑

k=0

λk

k! |u(t)|�k ≤ C f

∞∑

k=0

λk

k!
(
DKt−

1
2p

)�k

≤ C f (DK )3t−
3
2p

∞∑

k=0

λk

k!
(
DKt−

1
2p

)2k

≤ C f (DK )3t−
3
2p exp

(

λ(DK )2t−
1
p

)

≤ 2C f (DK )3t−
3
2p , t ≥ T̃1.

This implies (5.11). Thus Lemma 5.2 follows. ��
Next we prove (1.20) for small times.

Lemma 5.3 Let N ≥ 1 and u be the unique solution to problem (1.1) satisfying (1.14) and
(1.15). Suppose ϕ ∈ L p for p ∈ [1, 2). Let p1 and K be the constants given in (1.18) and
(5.2), respectively. Then, for any fixed T∗ ≥ 1, there exists a constant ε = ε(p1, T∗) > 0
such that, if L < ε (where L is the constant given in (5.1)) then, for any q ∈ [p1,∞],

sup
0<t≤2T∗

t
N
2 ( 1

p1
− 1

q )
(

‖u(t)‖Lq + t
1
2q |u(t)|Lq

)

≤ C∗K , if N ≥ 2, (5.12)

sup
0<t≤2T∗

t
1
2 ( 1

p − 1
q )

(

‖u(t)‖Lq + t
1
2q |u(0, t)|

)

≤ C∗K , if N = 1, (5.13)

where C∗ is independent of q, K , and T∗.

Proof We first prove (5.12). Let N ≥ 2. By (1.12) we consider

u(t) = S1(t)ϕ + D[u](t), (5.14)

where D[u] is the function defined by (3.3). For the linear part, by (2.8), (2.9), and (5.2), for
any q ∈ [p1,∞], we have

‖S1(t)ϕ‖Lq + t
1
2q |S1(t)ϕ|Lq ≤ (c1 + c2)t

− N
2 ( 1

p1
− 1

q )‖ϕ‖L p1

≤ Kt
− N

2 ( 1
p1

− 1
q )

, t > 0. (5.15)

For the nonlinear part D[u], let p2 be the constant given in (2.20). Then, by (2.11) with
(q, r) = (2N ,∞) and (3.3) we see that

‖D[u](t)‖L∞ ≤ C
∫ t

0
(t − s)−

3
4+ 1

4N | f (u(s))|L2N ds, t > 0. (5.16)

On the other hand, for r ∈ [p2,∞), by (1.15) and taking a sufficiently small ε = ε(r) > 0,
for L < ε, we can apply Lemma 2.2, and it holds that

| f (u(t))|Lr ≤ CrL1+ 2
N t−

1
2r , t > 0, (5.17)
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where C > 0 is independent of r , N , and L . Since 2N ≥ p2, by (5.16) and (5.17) we obtain

‖D[u](t)‖L∞ ≤ CL1+
2
N

∫ t

0
(t − s)−

3
4+ 1

4N s−
1
4N ds ≤ CL1+

2
N T

1
4∗ , t ≤ 2T∗. (5.18)

Furthermore, since it follows from p ∈ [1, 2)with (1.18) and (2.20) that N (1/p2−1/p1) < 1,
by (2.11) with (q, r) = (p2, p1), (3.3), and (5.17) we have

‖D[u](t)‖L p1 ≤ C
∫ t

0
(t − s)

− N
2 ( 1

p2
− 1

p1
)− 1

2 (1− 1
p2

)| f (u(s))|L p2 ds

≤ CL1+ 2
N

∫ t

0
(t − s)

− N
2 ( 1

p2
− 1

p1
)− 1

2 (1− 1
p2

)
s
− 1

2p2 ds

≤ CL1+ 2
N t

1
2− N

2 ( 1
p2

− 1
p1

)

≤ CL1+ 2
N T

1
2− N

2 ( 1
p2

− 1
p1

)

∗ , t ≤ 2T∗.

(5.19)

Similarly, by (2.12) with (q, r) = (p2, p1) we obtain

|D[u](t)|L p1 ≤
∫ t

0
(t − s)

− N−1
2 ( 1

p2
− 1

p1
)− 1

2 | f (u(s))|L p2 ds

≤ CL1+ 2
N

∫ t

0
(t − s)

− N−1
2 ( 1

p2
− 1

p1
)− 1

2 s
− 1

2p2 ds

≤ CL1+ 2
N t

1
2− N−1

2 ( 1
p2

− 1
p1

)− 1
2p1

≤ CL1+ 2
N t

− 1
2p1 T

1
2− N−1

2 ( 1
p2

− 1
p1

)

∗ , t ≤ 2T∗.
(5.20)

If we choose L small enough such that

max

(

T
1
4∗ , T

1
2− N−1

2 ( 1
p2

− 1
p1

)

∗
)

L
2
N < T

− N
2p1∗ ,

then, by (5.4), (5.18), (5.19), and (5.20), for any q ∈ [p1,∞], we get

‖D[u](t)‖Lq + t
1
2q |D[u](t)|Lq ≤ CLT

− N
2p1∗ ≤ CKT

− N
2p1∗ , t ≤ 2T∗. (5.21)

Since T∗ ≥ 1, by (5.15) and (5.21), for any q ∈ [p1,∞], we obtain

‖u(t)‖Lq + t
1
2q |u(t)|Lq ≤ C∗K

(

t
− N

2 ( 1
p1

− 1
q ) + T

− N
2p1∗

)

≤ C∗K
(

t
− N

2 ( 1
p1

− 1
q ) + T

− N
2 ( 1

p1
− 1

q )

∗
)

≤ C∗Kt
− N

2 ( 1
p1

− 1
q )

t ≤ 2T∗.
where C∗ is independent of q , K , and T∗. This implies (5.12).

Next we prove (5.13). Let N = 1. Then, we recall that p1 = p. By (1.13) we consider

u(t) = S1(t)ϕ + D̃[u](t), (5.22)

where D̃[u] is the function defined by (3.23). For the linear part, by (2.8), (2.10), and (5.2),
for any q ∈ [p,∞], we have

‖S1(t)ϕ‖Lq ≤ c1t
− 1

2 ( 1
p − 1

q )‖ϕ‖L p ≤ Kt−
1
2 ( 1

p − 1
q )

, t > 0 (5.23)
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and

|[S1(t)ϕ](0)| ≤ c2t
− 1

2p ‖ϕ‖L p ≤ Kt−
1
2p , t > 0. (5.24)

On the other hand, by (1.15) and taking a sufficiently small ε > 0, for L < ε, we can apply
Lemma 2.3, and we have

| f (u(0, t))| ≤ CL3t−
1
2 , t > 0. (5.25)

Then, for the nonlinear part D̃[u], it holds from (2.7), (3.23), and (5.25) that, for any q ∈
[p,∞],

‖D̃[u](t)‖Lq ≤ C
∫ t

0
(t − s)−

1
2 (1− 1

q )| f (u(0, s))| ds

≤ CL3
∫ t

0
(t − s)−

1
2 (1− 1

q )s− 1
2 ds

≤ CL3t
1
2q B

(
1

2
+ 1

2q
,
1

2

)

≤ CL3T
1
2q∗ t ≤ 2T∗.

(5.26)

Similarly, we have

|D̃[u](0, t)| ≤ C
∫ t

0
(t − s)−

1
2 | f (u(0, s))| ds

≤ CL3
∫ t

0
(t − s)−

1
2 s− 1

2 ds ≤ CL3, t ≤ 2T∗.
(5.27)

If we choose L < T−1/(4p)∗ , then, by (5.4) and (5.26), for any q ∈ [p,∞], we get

‖D̃[u](t)‖Lq ≤ CLT
− 1

2 ( 1
p − 1

q )

∗ ≤ CKT
− 1

2 ( 1
p − 1

q )

∗ , t ≤ 2T∗. (5.28)

Furthermore, by (5.4) and (5.27), it holds that

|D̃[u](0, t)| ≤ CLT
− 1

2p∗ ≤ CKT
− 1

2p∗ , t ≤ 2T∗. (5.29)

Combining (5.23) and (5.28), we have

‖u(t)‖Lq ≤ CK

(

t−
1
2 ( 1

p − 1
q ) + T

− 1
2 ( 1

p − 1
q )

∗
)

≤ CKt−
1
2 ( 1

p − 1
q )

, t ≤ 2T∗.

Similarly, by (5.24) and (5.29), we obtain

|u(0, t)| ≤ CK

(

t−
1
2p + T

− 1
2p∗

)

≤ CKt−
1
2p , t ≤ 2T∗.

These imply (5.13), thus Lemma 5.3 follows. ��
For the case N ≥ 2, applying Lemmata 5.1 and 5.3, we show the decay estimate of

|u(t)|Lq .

Lemma 5.4 Assume the same conditions as in Lemma 5.3 for the case N ≥ 2. Then, for K̃
as in (5.3), there exists a positive function F = F(N , p1, K̃ , λ) such that, if L < F and L
is small enough, then, for any q ∈ [p1,∞],

sup
t>0

t
N
2 ( 1

p1
− 1

q )+ 1
2q |u(t)|Lq ≤ CK , (5.30)

where C depends only on N.
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Proof Let u be a unique solution to problem (1.1) satisfying (1.14) and (1.15). Then, similarly
to (4.11), applying arguments similar to that in the proof of [20, Lemma 2.1] with (1.15), we
see that

u ∈ C((0,∞); Lq(∂RN+)), q ∈ [p1,∞]. (5.31)

By Lemma 5.3, for any T∗ ≥ 1, there exists ε = ε(p1, T∗) such that, if L < ε, then

|u(t)|Lq ≤ C∗Kt
− N

2 ( 1
p1

− 1
q )− 1

2q , 0 < t ≤ 2T∗, (5.32)

where C∗ ≥ 1 is independent of q, K and T∗. Let us fix T∗ large enough to be chosen later,
put

T = sup

{

0 < s < ∞; |u(t)|Lq ≤ 2C∗Kt
− N

2 ( 1
p1

− 1
q )− 1

2q for all q ∈ [p1, ∞] and 0 < t < s

}

.

Then, since T∗ ≥ 1, by (5.32) we have T ≥ 2T∗ ≥ 2.
We prove T = ∞. The proof is by contradiction. We assume that T < ∞. Then, by (5.31)

we see that

|u(T )|Lq = 2C∗KT
− N

2 ( 1
p1

− 1
q )− 1

2q . (5.33)

On the other hand, by (2.9) with (q, r) = (p1, q) and (5.2) we have

|S1(T )ϕ|Lq ≤ c2T
− N

2 ( 1
p1

− 1
q )− 1

2q ‖ϕ‖L p1 ≤ C∗KT
− N

2 ( 1
p1

− 1
q )− 1

2q . (5.34)

Let T1 be the constant given in Lemma 5.1 with D = 2C∗, and let us assume that

T∗ ≥ T1 ≥ 1. (5.35)

Furthermore, let I1 and I2 be functions given in (4.16), and let p2 be the constant given in
(2.20). Then, for the term I1, since T ≥ 2T∗, by (2.12) with (q, r) = (p2, q) we get

I1(T ) ≤ C

(∫ T∗

0
+

∫ T /2

T∗

)

(T − s)
− N−1

2 ( 1
p2

− 1
q )− 1

2 | f (u(s))|L p2 ds

=: A(T ) + B(T ).

(5.36)

Since p1 ≥ p2 ≥ 1 and T ≥ 1, due to (1.15) and taking a sufficiently small L if necessary,
we can apply Lemma 2.2 to the term A(T ), and we obtain

A(T ) ≤ CT
− N−1

2 ( 1
p2

− 1
q )− 1

2

∫ T∗

0
L1+ 2

N s
− 1

2p2 ds

≤ CL1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q T

− 1
2 (1− 1

p2
)− N

2 ( 1
p2

− 1
p1

)
T
1− 1

2p2∗

≤ CL1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q T

1− 1
2p2∗ .

(5.37)
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Furthermore, let p3 be the constant given in (5.7). Then, since T∗ ≥ T1 and it follows from
p1 < 2 that p2 ≥ p3 we can apply Lemma 5.1 to the term B(T ), and we have

B(T ) ≤ CT
− N−1

2 ( 1
p2

− 1
q )− 1

2

∫ T /2

T∗
K 1+ 2

N s
− N

2 ( 1
p1

− 1
p2

)− 1
p1

− 1
2p2 ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q

∫ T /2

T∗
T

− 1
2 (1− 1

p2
)− N

2 ( 1
p2

− 1
p1

)
s
− N

2 ( 1
p1

− 1
p2

)− 1
p1

− 1
2p2 ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q

∫ T /2

T∗
s
− 1

2− 1
p1 ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q

∫ ∞

T∗
s
− 1

2− 1
p1 ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q T

− 1
p1

+ 1
2

∗ ,

(5.38)

where C is independent of q , L , K , and T∗. Moreover, for the term I2, since q ≥ p1 ≥ p3
and p1 < 2, by (2.12) with q = r and (5.6) we see that

I2(T ) ≤
∫ T

T /2
(T − s)−

1
2 | f (u(s))|Lq ds

≤ CK 1+ 2
N

∫ T

T /2
(T − s)−

1
2 s

− N
2 ( 1

p1
− 1

q )− 1
p1

− 1
2q ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
p1

− 1
2q

∫ T

T /2
(T − s)−

1
2 ds

≤ CK 1+ 2
N T

− N
2 ( 1

p1
− 1

q )− 1
2q T

− 1
p1

+ 1
2

∗ ,

where C is independent of q , L , K , and T∗. This together with (4.16), (5.36), (5.37), and
(5.38) implies that

|D[u](T )|Lq ≤ I1(T ) + I2(T )

≤ D∗T
− N

2 ( 1
p1

− 1
q )− 1

2q

(

L1+ 2
N T

1− 1
2p2∗ + K 1+ 2

N T
− 1

p1
+ 1

2
∗

)

, (5.39)

where D∗ is a constant independent of L , K , and T∗. Since p1 < 2, we can take a sufficiently
large constant T∗ ≥ 1 so that

D∗T
− 1

p1
+ 1

2
∗ K

2
N ≤ D∗T

− 1
p1

+ 1
2

∗ K̃
2
N ≤ C∗

4
(5.40)

which means

T∗ ≥
(
4D∗ K̃

2
N

C∗

) 1
1
p1

− 1
2 . (5.41)

This together with (5.35) implies that T∗ depends on λ, K̃ , and p1 but not on L . Then we can
also take a sufficiently small constant L so that

D∗T
1− 1

2p2∗ L
2
N ≤ C∗

4
(5.42)
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and this means

L ≤
(
4D∗T

1− 1
2p2∗

C∗

)− N
2

. (5.43)

By (5.4), (5.39), (5.40), and (5.42) we have

|D[u](T )|Lq ≤ 1

2
C∗KT

− N
2 ( 1

p1
− 1

q )− 1
2q . (5.44)

Combining (5.14), (5.34), and (5.44), we see that

|u(T )|Lq ≤ |S1(T )ϕ|Lq + |D[u](t)|Lq

≤
(

C∗ + C∗
2

)

KT
− N

2 ( 1
p1

− 1
q )− 1

2q < 2C∗KT
− N

2 ( 1
p1

− 1
q )− 1

2q .

This contradicts (5.33), and we see T = ∞. In order to make clear the dependence of the
choice we made on T∗ and L , we collect below all the conditions (5.35), (5.41), and (5.43)

T∗ ≥ T1, T∗ ≥
(
4D∗ K̃

2
N

C∗

) 1
1
p1

− 1
2 , L ≤

(
4D∗T

1− 1
2p2∗

C∗

)− N
2

,

where T1 satisfies (5.9) with D = 2C∗, namely

T1 ≥
(

λ(2C∗ K̃ )2

log 2

) p1
N

.

Here C∗ and D∗ are constants depending at most on N and p1. Then we can find a function
F depending on N , p1, K̃ , and λ such that the conditions on L can be written as L <

F(N , p1, K̃ , λ) and L small enough. Thus Lemma 5.4 follows. ��
Similarly, for the case N = 1, applying Lemmata 5.2 and 5.3, we have the following.

Lemma 5.5 Assume the same conditions as in Lemma 5.3 for the case N = 1. Then, for K̃
as in (5.3), there exists a positive function F = F(p, K̃ , λ) such that, if L < F and L is
small enough, then,

sup
t>0

t
1
2p |u(0, t)| ≤ CK ,

where C is independent of p and K .

Proof Applying the same argument as in the proof of Lemma 5.4, we can prove this lemma.
For reader’s convenience, we give it here.

Let u be a unique solution to problem (1.1) satisfying (1.14) and (1.15). Then, similarly
to (5.31), we can easily show that

u(0, t) ∈ C((0,∞)). (5.45)

By Lemma 5.3, for any T∗ ≥ 1, there exists ε = ε(p, T∗) such that, if L < ε, then

|u(0, t)| ≤ C∗Kt−
1
2p , 0 < t ≤ 2T∗, (5.46)

where C∗ ≥ 1 is independent of K and T∗. Let us fix T∗ large enough to be chosen later, put

T = sup

{

0 < s < ∞ ; |u(0, t)| ≤ 2C∗Kt−
1
2p for all 0 < t < s

}

.
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Then, since T∗ ≥ 1, by (5.46) we have T ≥ 2T∗ ≥ 2.
We prove T = ∞. The proof is by contradiction. We assume that T < ∞. Then, by (5.45)

we see that

|u(0, T )| = 2C∗KT− 1
2p . (5.47)

On the other hand, by (2.10) with q = p and (5.2) we have

|[S1(T )ϕ](0)| ≤ c2T
− 1

2p ‖ϕ‖L p ≤ C∗KT− 1
2p . (5.48)

Let T̃1 be the constant given in Lemma 5.2 with D = 2C∗, and let us assume

T∗ ≥ T̃1 ≥ 1. (5.49)

Furthermore, since T ≥ 2T∗, by (3.23) we put

|D̃[u](0, T )| ≤ C

( ∫ T∗

0
+

∫ T /2

T∗
+

∫ T

T /2

)

(T − s)−
1
2 | f (u(0, s))| ds

=: Ĩ1(T ) + Ĩ2(T ) + Ĩ3(T ).

(5.50)

Since p ≥ 1 and T ≥ 2T∗, due to (1.15) and taking a sufficiently small L if necessary, we
can apply Lemma 2.3 to the term Ĩ1(T ), and we obtain

Ĩ1(T ) ≤ CT− 1
2

∫ T∗

0
L3s− 1

2 ds

≤ CL3T− 1
2p T− 1

2 (1− 1
p )T

1
2∗ ≤ CL3T− 1

2p T
1
2p∗ .

(5.51)

Furthermore, since T∗ ≥ T̃1 and p < 2, for the terms Ĩ2(T ) and Ĩ3(T ), we can apply
Lemma 5.2, and we have

Ĩ2(T ) ≤ CT− 1
2

∫ T /2

T∗
K 3s− 3

2p ds

≤ CK 3T− 1
2p

∫ T /2

T∗
T− 1

2 (1− 1
p )s− 3

2p ds

≤ CK 3T− 1
2p

∫ T /2

T∗
s− 1

2− 1
p ds ≤ CK 3T− 1

2p T
− 1

p + 1
2∗ ,

and

Ĩ3(T ) ≤ CK 3
∫ T

T /2
(T − s)−

1
2 s− 3

2p ds

≤ CK 3T− 3
2p

∫ T

T /2
(T − s)−

1
2 ds ≤ CK 3T− 1

2p T
− 1

p + 1
2∗ ,

where C is a constant independent of p, L , K , and T∗. These together with (5.50) and (5.51)
imply that

|D̃[u](0, T )| ≤ D∗T− 1
2p

(

L3T
1
2p∗ + K 3T

− 1
p + 1

2∗
)

, (5.52)

where D∗ is a constant independent of L , K , and T∗. Since p < 2, we can take a sufficiently
large constant T∗ ≥ 1 so that

D∗T
− 1

p + 1
2∗ K 2 ≤ D∗T

− 1
p + 1

2∗ K̃ 2 ≤ C∗
4

(5.53)
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which means

T∗ ≥
(
4D∗ K̃ 2

C∗

) 1
1
p − 1

2 ≥
(
4D∗K 2

C∗

) 1
1
p − 1

2 . (5.54)

This together with (5.49) implies that T∗ depends on λ, K̃ , and p but not on L . Then we can
also take a sufficiently small constant L so that

D∗T
1
2p∗ L2 ≤ C∗

4
(5.55)

and this means

L ≤
(
4D∗T

1
2p∗

C∗

)− 1
2

. (5.56)

By (5.4), (5.52), (5.53), and (5.55) we have

|D̃[u](0, T )| ≤ 1

2
C∗KT− 1

2p .

This together with (5.22) and (5.48) implies

|u(0, T )| ≤ |[S1(T )ϕ](0)| + |D̃[u](0, T )| ≤
(

C∗ + C∗
2

)

KT− 1
2p < 2C∗KT− 1

2p .

This contradicts (5.47), and we see T = ∞. In order to make clear the dependence of the
choice we made on T∗ and L , we collect below all the conditions (5.49), (5.54), and (5.56)

T∗ ≥ T̃1, T∗ ≥
(
4D∗ K̃ 2

C∗

) 1
1
p − 1

2 , L ≤
(
4D∗T

1
2p∗

C∗

)− 1
2

,

where T̃1 satisfies (5.9) with (N , p1) = (1, p) and D = 2C∗, namely

T̃1 ≥
(

λ(2C∗ K̃ )2

log 2

)p

.

Here C∗ and D∗ are constants depending at most on p. Then we can find a function F
depending on p, K̃ , and λ such that the condition L can be written as L < F(p, K̃ , λ) and
L small enough. Thus Lemma 5.5 follows. ��

Now we ready to prove Theorem 1.3. We first prove it for the case N ≥ 2.

Proof of Theorem 1.3 (N ≥ 2). Let u be a unique solution to problem (1.1) satisfying (1.14)
and (1.15). Let T be a sufficiently large constant to be chosen later, which satisfies T ≥ T1,
where T1 is the constant given in Lemma 5.1 with D = C∗. Suppose that L is small enough
such that Lemmata 5.3 and 5.4 hold. Then, by (5.12) and (5.30), in order to prove (1.20), it
suffices to prove the decay estimate of ‖u(t)‖Lq for t ≥ 2T .

Let p1 be the constant given in (1.18) and q ∈ [p1,∞]. For the linear part, by (2.8) with
(q, r) = (p1, q) and (5.2) we have

‖S1(t)ϕ‖Lq ≤ c1t
− N

2 ( 1
p1

− 1
q )‖ϕ‖L p1 ≤ Kt

− N
2 ( 1

p1
− 1

q )
, t > 0. (5.57)
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For the nonlinear part, let J1 and J2 be functions given in (4.24), and let p2 be the constant
given in (2.20). Then, for the term J1, similarly to (5.36), by (2.11) with (q, r) = (p2, q) we
put

J1(t) ≤ C

(∫ T

0
+

∫ t/2

T

)

(t − s)
− N

2 ( 1
p2

− 1
q )− 1

2 (1− 1
p2

)| f (u(s))|L p2 ds

=: Ã(t) + B̃(t), t ≥ 2T .

(5.58)

For the term Ã(t), since p1 ≥ p2 ≥ 1, by (1.15) and taking a sufficiently small L if necessary,
we can apply Lemma 2.2, and we have

Ã(t) ≤ CL1+ 2
N t

− N
2 ( 1

p2
− 1

q )− 1
2 (1− 1

p2
)
∫ T

0
s
− 1

2p2 ds

≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )
t
− N

2 ( 1
p2

− 1
p1

)− 1
2 (1− 1

p2
)
T
1− 1

2p2 , t ≥ 2T .

(5.59)

Furthermore, let p3 be the constant given in (5.7). Then, for the term B̃(t), since T ≥ T1 ,
and p2 ≥ p3, we can apply Lemma 5.1, and it follows from p2 ≥ 1 that

B̃(t) ≤ CK 1+ 2
N t

− N
2 ( 1

p2
− 1

q )− 1
2 (1− 1

p2
)
∫ t/2

T
s
− N

2 ( 1
p1

− 1
p2

)− 1
p1

− 1
2p2 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )
t
− N

2 ( 1
p2

− 1
p1

)− 1
2 (1− 1

p2
)
∫ t/2

T
s
− N

2 ( 1
p1

− 1
p2

)− 1
p1

− 1
2p2 ds, t ≥ 2T .

(5.60)

For p ∈ (p2, 2) (which implies p1 = p), since p1 < 2, we can choose σ1 ∈ (0, 1) satisfying

0 < σ1 < min

{
1

p1
− 1

2
,
N

2

(
1

p2
− 1

p1

)}

.

Then, by (5.59) and (5.60) we have

Ã(t) ≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )− N
2 ( 1

p2
− 1

p1
)
T
1− 1

2p2 ≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1T
1− 1

2p2 , t ≥ 2T ,

and

B̃(t) ≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1

∫ t/2

T
t
− N

2 ( 1
p2

− 1
p1

)− 1
2 (1− 1

p2
)+σ1s

− N
2 ( 1

p1
− 1

p2
)− 1

p1
− 1

2p2 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1

∫ t/2

T
s
− 1

p1
− 1

2+σ1 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1

∫ ∞

T
s
− 1

p1
− 1

2+σ1 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1T
1
2− 1

p1
+σ1 , t ≥ 2T .

This together with (5.4) and (5.58) implies that

J1(t) ≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1T
1− 1

2p2 + CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ1T
1
2− 1

p1
+σ1 , t ≥ 2T .

Choosing T large enough such that

K
2
N T

1
2− 1

p1
+σ1 ≤ K̃

2
N T

1
2− 1

p1
+σ1 ≤ 1
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namely

T ≥ (K̃
2
N )

1
1
p1

− 1
2 −σ1

and L small enough such that

L
2
N T

1− 1
2p2 ≤ 1,

thanks to (5.4) we get

J1(t) ≤ CLt
− N

2 ( 1
p1

− 1
q )−σ1 + CKt

− N
2 ( 1

p1
− 1

q )−σ1

≤ CKt
− N

2 ( 1
p1

− 1
q )−σ1 , t ≥ 2T . (5.61)

On the other hand, for p ≤ p2, namely p1 = p2, we consider two cases, N = 2 and
N ≥ 3. For the case N ≥ 3, since p1 ∈ (1, 2), we can choose σ2 ∈ (0, 1) satisfying

0 < σ2 < min

{
1

p1
− 1

2
,
1

2

(

1 − 1

p1

)}

.

Then, by (5.59) and (5.60) we see that

Ã(t) ≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2T
1− 1

2p2 , t ≥ 2T ,

and

B̃(t) ≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2

∫ t/2

T
t
− 1

2 (1− 1
p1

)+σ2s
− 3

2p1 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2

∫ t/2

T
s
− 1

p1
− 1

2+σ2 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2

∫ ∞

T
s
− 1

p1
− 1

2+σ2 ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2T
1
2− 1

p1
+σ2 , t ≥ 2T .

This together with (5.4) and (5.58) implies that

J1(t) ≤ CL1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2T
1− 1

2p2 + CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ2T
1
2− 1

p1
+σ2 , t ≥ 2T .

Choosing T large enough such that

K
2
N T

1
2− 1

p1
+σ2 ≤ K̃

2
N T

1
2− 1

p1
+σ2 ≤ 1

and L small enough such that

L
2
N T

1− 1
2p2 ≤ 1,

thanks to (5.4) we get

J1(t) ≤ CLt
− N

2 ( 1
p1

− 1
q )−σ2 + CKt

− N
2 ( 1

p1
− 1

q )−σ2

≤ CKt
− N

2 ( 1
p1

− 1
q )−σ2 , t ≥ 2T . (5.62)

For the case N = 2, since p1 = p2 = 1 (which implies p = 1), by (5.59) and (5.60) again
we see that

Ã(t) ≤ CL2t
−( 1

p1
− 1

q )
T

1
2 , t ≥ 2T ,
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and

B̃(t) ≤ CK 2t
−( 1

p1
− 1

q )
∫ t/2

T
s− 3

2 ds ≤ CK 2t
−( 1

p1
− 1

q )
T− 1

2 , t ≥ 2T .

This together with (5.4) and (5.58) implies that

J1(t) ≤ CL2t
−( 1

p1
− 1

q )
T

1
2 + CK 2t

−( 1
p1

− 1
q )
T− 1

2 , t ≥ 2T .

Choosing T large enough such that

KT− 1
2 ≤ K̃ T− 1

2 ≤ 1

and L small enough such that

LT
1
2 ≤ 1,

thanks to (5.4) we get

J1(t) ≤ CLt
−( 1

p1
− 1

q ) + CKt
−( 1

p1
− 1

q ) ≤ CKt
−( 1

p1
− 1

q )
, t ≥ 2T . (5.63)

Therefore, by (5.61), (5.62), and (5.63), for N ≥ 2, we have

J1(t) ≤ CKt
− N

2 ( 1
p1

− 1
q )

, t ≥ 2T . (5.64)

Let us come back to the J2(t) term. Since T ≥ T1 and q ≥ p1 ≥ p3, we can apply Lemma5.1,
and by (2.11) with q = r and (5.6) we have

J2(t) ≤ CK 1+ 2
N

∫ t

t/2
(t − s)−

1
2 (1− 1

q )s
− N

2 ( 1
p1

− 1
q )− 1

p1
− 1

2q ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )− 1
p1

− 1
2q

∫ t

t/2
(t − s)−

1
2 (1− 1

q ) ds

≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )− 1
p1

+ 1
2 , t ≥ 2T .

Since p1 < 2, we can choose σ3 > 0 satisfying 0 < σ3 < 1/p1 − 1/2, and we get

J2(t) ≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )−σ3 ≤ CK 1+ 2
N t

− N
2 ( 1

p1
− 1

q )− σ3
2 T− σ3

2 , t ≥ 2T .

Choosing T large enough such that

K
2
N T− σ3

2 ≤ K̃
2
N T− σ3

2 ≤ 1,

we have

J2(t) ≤ CKt
− N

2 ( 1
p1

− 1
q )− σ3

2 , t ≥ 2T . (5.65)

Combining (5.57), (5.64), and (5.65), we obtain

‖u(t)‖Lq ≤ CKt
− N

2 ( 1
p1

− 1
q )

, t ≥ 2T ,

thus (1.20) follows.
Finally we prove (1.21) by the same arguments as in the proof of [10, Theorem 2.2].

Indeed, let p1 ∈ (1, 2). By (5.61), (5.62), and (5.65) we have

t
N
2 ( 1

p1
− 1

q )‖u(t) − S1(t)ϕ‖Lq = o(1), t → ∞.
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Now, by density, let {ϕn} ⊂ C∞
0 such that ϕn → ϕ in L p1 . Then, by (2.8), it holds that

t
N
2 ( 1

p1
− 1

q )‖S1(t)ϕ‖Lq ≤ t
N
2 ( 1

p1
− 1

q )‖S1(t)(ϕ − ϕn)‖Lq + t
N
2 ( 1

p1
− 1

q )‖S1(t)ϕn‖Lq

≤ C‖ϕ − ϕn‖L p1 + Ct
N
2 ( 1

p1
− 1

q )
t−

N
2 (1− 1

q )‖ϕn‖L1

≤ C‖ϕ − ϕn‖L p1 + Ct
− N

2 (1− 1
p1

)‖ϕn‖L1 , t > 0.

Since p1 > 1, this proves that

t
N
2 ( 1

p1
− 1

q )‖S1(t)ϕ‖Lq = o(1), t → ∞,

and so

t
N
2 ( 1

p1
− 1

q )‖u(t)‖Lq = o(1), t → ∞.

Thus the proof of Theorem 1.3 for the case N ≥ 2 is complete. ��

Next, applying the same argument as in the prof of Theorem 1.3 for the case N ≥ 2, we
prove Theorem 1.3 for the case N = 1.

Proof of Theorem 1.3 (N = 1). Let u be a unique solution to problem (1.1) satisfying (1.14)
and (1.15). Let T be a sufficiently large constant to be chosen later, which satisfies T ≥ T̃1,
where T̃1 is the constant given in Lemma 5.2 with D = C∗. Suppose that L is sufficiently
small so that Lemmata 5.3 and 5.5 hold. Then, it is enough to prove the decay estimate of
‖D̃(t)‖Lq for t ≥ 2T in order to obtain (1.20).

Let q ∈ [p,∞]. Then, similarly to (5.50), by (2.7) and (3.23) we put

‖D̃[u](t)‖Lq ≤ C

( ∫ T

0
+

∫ t/2

T
+

∫ t

t/2

)

(t − s)−
1
2 (1− 1

q )| f (u(0, s))| ds

=: J̃1(t) + J̃2(t) + J̃3(t), t ≥ 2T .

(5.66)

For the term J̃1, by (1.15) and taking a sufficiently small L if necessary, we can apply
Lemma 2.3, and we have

J̃1(t) ≤ CL3t−
1
2 (1− 1

q )

∫ T

0
s− 1

2 ds

≤ CL3t−
1
2 ( 1

p − 1
q )t−

1
2 (1− 1

p )T
1
2 , t ≥ 2T .

(5.67)

Furthermore, for the term J̃2(t), since T ≥ T̃1, we can apply Lemma 5.2, and it holds that

J̃2(t) ≤ CK 3t−
1
2 (1− 1

q )

∫ t/2

T
s− 3

2p ds,

≤ CK 3t−
1
2 ( 1

p − 1
q )t−

1
2 (1− 1

p )

∫ t/2

T
s− 3

2p ds, t ≥ 2T .

For p ∈ (1, 2), we can choose σ̃1 ∈ (0, 1) satisfying

0 < σ̃1 < min

(
1

p
− 1

2
,
1

2

(

1 − 1

p

))

.
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Then, for t ≥ 2T we have

CK 3t−
1
2 ( 1

p − 1
q )t−

1
2 (1− 1

p )

∫ t/2

T
s− 3

2p ds

= CK 3t−
1
2 ( 1

p − 1
q )−σ̃1

∫ t/2

T
t−

1
2 (1− 1

p )+σ̃1s− 3
2p ds

≤ CK 3t−
1
2 ( 1

p − 1
q )−σ̃1

∫ t/2

T
s− 3

2p − 1
2 (1− 1

p )+σ̃1 ds

≤ CK 3t−
1
2 ( 1

p − 1
q )−σ̃1T

1
2− 1

p +σ̃1 .

(5.68)

Then, by (5.67) and (5.68) we have

J̃1(t) + J̃2(t) ≤ CL3t−
1
2 ( 1

p − 1
q )t−

1
2 (1− 1

p )T
1
2 + CK 3t−

1
2 ( 1

p − 1
q )−σ̃1T

1
2− 1

p +σ̃1

≤ Ct−
1
2 ( 1

p − 1
q )−σ̃1

(
L3T

1
2 + K 3T

1
2− 1

p +σ̃1
)

.

Now, choosing T large enough such that

K 2T
1
2− 1

p +σ̃1 ≤ K̃ 2T
1
2− 1

p +σ̃1 ≤ 1

and then L small enough so that

L2T
1
2 ≤ 1,

thanks to (5.4) we get

J̃1(t) + J̃2(t) ≤ CKt−
1
2 ( 1

p − 1
q )−σ̃1 . (5.69)

On the other hand, for p = 1, by (5.67) and (5.68) again we see that

J̃1(t) + J̃2(t) ≤ CKt−
1
2 ( 1

p − 1
q )

, t ≥ 2T .

This together with (5.69) implies for all p ∈ [1, 2)
J̃1(t) + J̃2(t) ≤ CKt−

1
2 ( 1

p − 1
q )

, t ≥ 2T . (5.70)

For the J̃3(t) term, since T ≥ T̃1, we can apply Lemma 5.2, and it holds that

J̃3(t) ≤ CK 3
∫ t

t/2
(t − s)−

1
2 (1− 1

q )s− 3
2p ds

≤ CK 3t−
3
2p

∫ t

t/2
(t − s)−

1
2 (1− 1

q ) ds ≤ CK 3t−
1
2 ( 1

p − 1
q )− 1

p + 1
2 , t ≥ 2T .

Since p < 2, we can choose σ̃2 > 0 satisfying 0 < σ̃2 < 1/p − 1/2, and we get

J̃3(t) ≤ CK 3t−
1
2 ( 1

p − 1
q )−σ̃2 ≤ CK 3t−

1
2 ( 1

p − 1
q )− σ̃2

2 T− σ̃2
2 , t ≥ 2T .

Now, choosing T large enough such that

K 2T− σ̃2
2 ≤ K̃ 2T− σ̃2

2 ≤ 1,

we get

J̃3(t) ≤ CKt−
1
2 ( 1

p − 1
q )− σ̃2

2 . (5.71)
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Combining (5.66), (5.70), and (5.71), we see that

‖D̃[u](t)‖Lq ≤ CKt−
1
2 ( 1

p − 1
q )

, t ≥ 2T ,

thus (1.20) follows. Furthermore, applying the same arguments as in the proof of Theorem 1.3
for the case N ≥ 2 with (5.69) and (5.71), we obtain (1.21). Thus the proof of Theorem 1.3
for the case N = 1 is complete. ��

Remark 5.1 Similarly to the case of the Cauchy problem for the semilinear heat equation with
(1.7), the nonlinear boundary problem (1.1) with (1.9) has no scaling invariance and the L p

and expL2 norms have no relationship between each other. In order to have initial data which
fulfill condition (1.19), let us choose a function ϕ ∈ L p(RN+) ∩ L∞(RN+) with p ∈ [1, 2).
Then, by (2.15) we see that ϕ ∈ expL2. Then, let us consider a dilation ϕλ(x) = λN/pϕ(λx)
so that ‖ϕλ‖L p = ‖ϕ‖L p . Since ‖ϕλ‖L2 = λN (1/p−1/2)‖ϕ‖L2 and ‖ϕλ‖L∞ = λN/p‖ϕ‖L∞ ,
it follows

lim sup
λ→0

‖ϕλ‖expL2 ≤ lim
λ→0

(‖ϕλ‖L2 + ‖ϕλ‖L∞
) = 0.

This implies that there is λ > 0 so that ϕλ fulfills condition (2.4), even though its L p norm
might be large.

In the end of this section we prove Theorem 1.4. In the following Lemmata, we assume
‖u(t)‖Lq bounded at the origin and decaying at infinity, and we can deduce that also
‖ f (u(t))‖Lr is bounded and decays at infinity for r ≥ p3, where p3 is given in (5.7).

Lemma 5.6 Let N ≥ 2, p ∈ [1, 2), and K > 0. Suppose that u ∈ C(RN+ × (0,∞)) and for
any q ∈ [p,∞],

sup
t>0

(1 + t)
N
2 ( 1

p − 1
q )t

1
2q |u(t)|Lq ≤ CK , (5.72)

where C is independent of q and K . Let f be a function satisfying (1.9). Then, there is ε > 0
depending only on λ such that, if K < ε, then, for any r ∈ [p4,∞],

sup
t>0

(1 + t)
N
2 ( 1

p − 1
r )+ 1

p t
1
2r | f (u(t))|Lr ≤ 2C f (CK )1+

2
N , (5.73)

where C f is given in (1.9) and

p4 := max

{

1,
pN

N + 2

}

. (5.74)

Proof Let k ∈ N ∪ {0} and �k be the constant given in (2.22). Then, since it follows from
(5.74) that

�kr ≥
(

1 + 2

N

)

p4 ≥ p,
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similarly to (4.9), for any r ∈ [p4,∞], it follows from (1.9) and (5.72) that

| f (u(t))|Lr ≤ C f

∞∑

k=0

λk

k! |u(t)|�k
L�k r

≤ C f

∞∑

k=0

λk

k!
(

(1 + t)
− N

2 ( 1
p − 1

�k r
)
t
− 1

2�k r (CK )

)�k

≤ C f (CK )1+
2
N (1 + t)

N
2r − N

2p (1+ 2
N )t−

1
2r

∞∑

k=0

λk

k!
(
(1 + t)−

N
2p (CK )

)2k

≤ C f (CK )1+
2
N (1 + t)−

N
2 ( 1

p − 1
r )− 1

p t−
1
2r

∞∑

k=0

λk

k! (CK )2k, t > 0.

(5.75)

We can take a sufficiently small ε = ε(λ) > 0 so that, for K ≤ ε, it holds that

∞∑

k=0

λk

k! (CK )2k = eλ(CK )2 ≤ 2. (5.76)

This together with (5.75) implies (5.73). Thus Lemma 5.6 follows. ��
Lemma 5.7 Let N = 1, p ∈ [1, 2), and K > 0. Suppose u ∈ C((0,∞)) and

sup
t>0

(1 + t)
1
2p |u(t)| ≤ CK , (5.77)

where C is independent of K . Let f be a function satisfying (1.9). Then, there is ε > 0 such
that, if K < ε, then,

sup
t>0

(1 + t)
3
2p | f (u(t))| ≤ 2C f (CK )3, (5.78)

where C f is given in (1.9).

Proof Let k ∈ N∪{0} and �k be the constant given in (2.22) with N = 1, namely, �k = 2k+3.
Furthermore, let ε be a sufficiently small constant given in Lemma 5.6. Then, similarly to
(4.33), it follows from (1.9), (5.76), and (5.77) that

| f (u(t))| ≤ C f

∞∑

k=0

λk

k! |u(t)|�k

≤ C f

∞∑

k=0

λk

k!
(
(1 + t)−

1
2p (CK )

)�k

≤ C f (CK )3(1 + t)−
3
2p

∞∑

k=0

λk

k! (CK )2k ≤ 2C f (CK )3(1 + t)−
3
2p , t > 0.

This implies (5.78), thus Lemma 5.7 follows. ��
Proof of Theorem 1.4. Put K = ‖ϕ‖expL2∩L p . Applying the same arguments as in the proofs
of Theorems 1.2 and 1.3 with Lemmata 5.6 and 5.7, we can prove Theorem 1.4. ��
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6 Asymptotic behavior

Let us come to the asymptotic behavior of the solution u as stated in Theorem 1.5.

Proof of Theorem 1.5. Let u be the global-in-time solution to problem (1.1) satisfying (1.22).
Furthermore, let ε > 0 be a sufficiently small constant chosen later. Then, by (1.22) and
(2.16) we can take a sufficiently large T = T (ε, N ) > 0 so that

‖u(T )‖expL2 ≤ C(‖u(T )‖L2 + ‖u(T )‖L∞) ≤ C(1 + T )−
N
4 < ε.

Therefore, applying the semigroup property of the kernel G, namely (2.1), we can assume,
without loss of generality, that ‖ϕ‖expL2∩L1 < ε.

We first consider the case N ≥ 2. By (1.22), taking a sufficiently small ε > 0 if necessary,
and applying the same argument as in the proof of Lemmata 2.2 and 5.1 with p1 = p2 =
p3 = 1, we have

sup
t>0

t
1
2 (1 + t)| f (u(t))|L1 < ∞.

Therefore we can define a mass of u(t) denote by m(t), that is,

m(t) :=
∫

R
N+

ϕ(x) dx +
∫ t

0

∫

RN−1
f (u(x ′, 0, s)) dx ′ ds, t ≥ 0.

Furthermore, it holds that
∫ t

0

∫

RN−1
f (u(x ′, 0, s)) dx ′ ds =

( ∫ 1

0
+

∫ t

1

)

| f (u(s))|L1 ds

≤ C
∫ 1

0
s− 1

2 ds + C
∫ ∞

1
s− 3

2 ds ≤ C, t ≥ 1.

(6.1)

This implies that there exists the limit of m(t), which we denote by m∗, such that

m∗ := lim
t→∞m(t) =

∫

R
N+

ϕ(x) dx +
∫ ∞

0

∫

RN−1
f (u(x ′, 0, s)) dx ′ ds.

Furthermore, similarly to (6.1), we obtain

m∗ − m(t) ≤ C
∫ ∞

t

∫

RN−1
f (u(x ′, 0, s)) dx ′ ds ≤ Ct−

1
2 , t ≥ 1.

Therefore, applying an argument similar to the proof of [20, Theorem 1.1] (see also [22])
with (1.22), we have (1.23) for the case N ≥ 2.

Next we consider the case N = 1. By (1.22) and taking a sufficiently small ε > 0 if
necessary, we can apply Lemmata 2.3 and 5.2, and we have

sup
t>0

t
1
2 (1 + t)| f (u(0, t))| < ∞.

Therefore we can define a mass of u(t) denote by m(t), that is,

m(t) :=
∫ ∞

0
ϕ(x) dx +

∫ t

0
f (u(0, s)) ds, t ≥ 0.

Furthermore, it holds that

∫ t

0
f (u(0, s)) ds =

(∫ 1

0
+

∫ t

1

)

| f (u(0, s))| ds ≤ C
∫ 1

0
s− 1

2 ds + C
∫ t

1
s− 3

2 ds ≤ C, t ≥ 1.
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This implies that there exists the limit of m(t), which we denote by m∗, such that

m∗ := lim
t→∞m(t) =

∫ ∞

0
ϕ(x) dx +

∫ ∞

0
f (u(0, s)) ds,

and it holds that

m∗ − m(t) ≤ C
∫ ∞

t
f (u(0, s)) ds ≤ Ct−

1
2 , t ≥ 1.

Therefore, applying the same argument as in the proof of (1.23) for the case N ≥ 2, we have
(1.23) for the case N = 1. Thus the proof of Theorem 1.5 is complete. ��
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