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Abstract Although deep learning has proven to be a successful 

and widely used technology across various industries, its 
drawbacks such as large models and difficulties in layout and 
maintenance in practical tasks have gradually become prominent. 
In view of the limitations and issues with the traditional method of 
measuring antenna parameters for Mobile Communication Base 
Stations (MCBS-APM), we are exploring the development of a 
new system that is designed to overcome the inefficiencies and 
potential risks associated with conventional labor-intensive 
methods. An effective measurement system which is composed of 
a Novel Instance Segmentation Network with Dual Attention and 
Focal Loss can accurately fathom out the antenna parameters in 
mobile communication base stations and completely subvert 
traditional measurement methods. To begin with, antenna video 
data is collected by unmanned aerial vehicle (UAV) which flies 
around the base station; then a designed instance segmentation 
network is employed to process and segment mobile 
communication base station antennas. At last, we implement 
real-time adjustments to control the actions of the UAV based on 
algorithmic measurements displayed on the accompanying mobile 
application. Our measurement system has been shown to greatly 
enhance measurement efficiency and accuracy, as evidenced by 
the results of our experiments. Quantitative results that are in line 
with industry standards show that our measurement system has 
strong robustness and reproducibility. 
 

Impact Statement  The angle of down-tilt for mobile 
communication base station antennas is critical in ensuring 
optimal network coverage and communication quality. Tradition- 
ally, measuring the antenna declination parameters has been 
inefficient and poses danger to engineers as they have to climb 
base stations. We propose a fully automated MCBS-APM system 
using UAV. Our effective measurement system, which is 
composed of a Novel Instance Segmentation Network with Dual 
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Attention and Focal Loss, represents a significant improvement 
over traditional methods MCBS-APM. With the results from the 
conducted experiments, it is fully proved that the proposed 
measurement system excels in improving efficiency and accuracy 
during measurement. Quantitative results in line with industry 
standards show that our measurement system has strong 
robustness and reproducibility. 
 

Index Tems Antenna Parameters; Deep learning; Instance 
segmentation; Measurement system; UAV. 

I. INTRODUCTION 

ITH the top spot of the competition occupied by deep 
learning technology again and again after the appearance 

of deep learning [1] by Hinton, the industry community has set 
off application researches on deep convolutional neural 
networks [2]. Under the premise that academia and industry 
promote mutual development, various new technologies have 
been proposed and verified with countless examples of 
successful applications in deep learning technology. More and 
more industries [3] have encountered bottlenecks in traditional 
methods for its difficulties to satisfy market demand. They tried 
to use these technologies which can make it easier and more 
efficient to change or even subvert traditional methods. 

Optimal down-tilt angle is a vital consideration that impacts 
network coverage and communication quality. The down-tilt 
angles are essential parameters for characterizing the 
orientation of an antenna in mobile communication networks. 
Adjusting these angles is crucial in the network optimization 
process of mobile communication systems. The down-tilt angle 
is the angle between the antenna and the vertical plane. This 
industry is suffering from problems such as insufficient 
efficiency and uncontrollable risks of traditional methods. In 
response to these problems, some researchers proposed 
methods relying on expensive hardware equipment. On the 
basis of kinematic structure, an evaluating system without 
contact was developed by Xu et al [4] which can estimate the 
accurate posture through a small amount of antenna images as 
well as some simple operation conducted on the smartphone 
and though lacks accuracy with an error of 2 , which fails to 

satisfy the communication industry standard. In addition, 
Pedras et al. [5] proposed a novel quality of experience model 
that utilizes radio frequency channel indicators to estimate 
user-perceived quality. They determined the optimal antenna 
down-tilt angle by considering the average opinion score level 
and manually adjusting it accordingly. Undoubtedly, the 

 

Ying Xu, Qirui Ke, Ziyi Jiang, Yikui Zhai, Member, IEEE, Angelo Genovese, Member, IEEE, Vincenzo 
Piuri, Fellow, IEEE, and Fabio Scotti, Senior Member, IEEE 

W

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3297991

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on July 26,2023 at 08:37:27 UTC from IEEE Xplore.  Restrictions apply. 

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers o r  lists, o r  reuse of  any  copyrighted component of  this work in  other works.

Antenna Parameter Measurement Network With
Dual Attention and Focus Loss Using UAV



TAI-2022-Nov-A-00801 2

UAV 
Control 

Display 
Measurement 
Parameters

Display 
Antenna 
Position 

Real-time 
Display

Intelligent 
Management 

Display
Flight

Parameters 

Android Application Module

Instance
 Segmentation 

Network

Reception and 
Processing

Service

High-Performance Computer

Algorithm   Module

5G

Parameters
Measurement

UAV Module

a b c  
Fig. 1. The structure of our system. In particular, (a) highlights the key functional modules of the mobile application, such as UAV control and management, 
visualization of UAV flight parameters and antenna positions, and display of measurement results generated by the algorithm module. (b) presents the mechanism 
by which the UAV transmits its video stream to the high-performance algorithm server via the 5G network and generates real-time measurement results. Lastly, (c) 
delineates the functional modules of the UAV control subsystem. 
 

contributions of the above methods should be acknowledged, 
and yet simultaneously their problems such as high labor costs, 
considerable measurement errors and demanding measurement 
environments are also worth noticing. Similarly, we develop a 
novel instance segmentation network with dual attention and 
focal loss for the system to measure the antenna down-tilt 
parameters for responding to these thorny problems. Firstly, 
UAV is utilized to fly around the base station to obtain antenna 
video data; then, 5G technology is adopted to transmit captured 
video data, and a designed instance segmentation network is 
employed to process captured video data and segment mobile 
communication base station antennas. Finally, Android 
Application (APP) displays algorithmic measurement results in 
real-time for the convenience of controlling UAV actions. 
Figure 1 can be referred to the architecture of the proposed 
system. The quantitative results that are in line with industry 
standards prove the strong robustness and reproducibility of our 
measurement system.  

We conducted multiple empirical studies to showcase the 
efficacy of our system and compared it with existing methods 
to demonstrate its superiority as the most advanced approach. 
Our work contributes in the following ways: 

1) This work proposes an efficient measuring system of 
antenna parameters to take the place of traditional 
methods for MCBS-APM that conduct with labors. 
Quantitative results that are in line with industry standards 
show that our measurement system has strong robustness 
and reproducibility. 

2) A novel general-purpose instance segmentation network 
with a dual attention module placing channel attention 
before spatial attention is proposed. Self-adaptive refining 
the features is presented to produce prime mask of each 
antenna and take the measurement of the antenna 
parameter. And focal loss is adopted to reconcile the 
serious imbalance between negative and positive samples. 

3) Our results indicate that the proposed method achieves 
superior performance in terms of speed and precision 
compared to existing state-of-the-art approaches.. 

The structure of the essay is as follows: Section II analyses 
the related works in how to address the relative problems, while 
Section III introduces the efficient measuring system of 

antenna parameters. Section IV provides an explanation of the 
experiment outcomes, and lastly Section V summarizes the 
work and expectations in this area. 

II. RELATED WORK 

A. Instance Segmentation 

Instance segmentation [6] occupying an essential, compli- 
cated and demanding position in computer vision, is able to 
localize different categories of object instances among different 
images for facilitating the prediction of the object 
instance-mask at specific pixel as well as the object class-label. 
Its application mostly lies in autonomous driving, surveillance 
and parameters measuring. With the appearance of 
Convolutional Neural Networks (CNN), scholars have 
proposed numerous instance segmentation frameworks, such as 
[7-10], where the rapid growth of the segmentation accuracy 
can be clearly observed. In [10], a series of experiments 
verified Mask R-CNN to be a direct as well as rapid instance 
segmentation approach. Fast/Faster R-CNN [11-12] has been 
shown to achieve superior results in predicting segmentation 
masks, compared to Fully Convolutional Network (FCN) [13], 
attributed to its use of box-regression and object classification. 
The Feature Pyramid Network (FPN) [14] can effectively 
capture stage-wise network features to enhance model 
performance. Specifically, the FPN utilizes a vertical network 
path and lateral connections to extract semantically rich 
features. The FPN architecture has shown impressive 
performance in numerous real-world scenarios, including 
autonomous driving, industrial inspection, and medical 
imaging, among others. 

B. Attention Mechanism 

Derived from deep learning, attention mechanism shares 
similarities with the attention mechanism of human vision in 
selecting the key information, ignoring other unimportant 
information and focusing on the important points among much 
information. With the proposal of [15], the effectiveness of the 
attention mechanism has been further proved, and it also 
opened a new era of attention mechanism research. Wang et al 
[16] introduced non-local operations that is the opening work of 
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attention mechanism in computer vision, using self-attention 
mechanism to establish remote dependence. A module of dual 
attention mechanism, connecting the channel attention module 
as well as the spatial attention module by cascading was 
introduced by Woo et al [17]. This module enjoys wide 
applicability and can be integrated with any feed-forward 
convolutional neural network. Since context fusion fails to use 
the relationship between objects in the global view, Fu et al [18] 
raised a dual attention network based on a self-attention 
mechanism for seizing feature dependence in the spatial and 
channel dimension in respective manner. Specifically, double 
attention modules are attached to the dilated FCN so as to 
establish the sematic dependence model on the spatial and 
channel dimension respectively. As more and more research is 
conducted on attention mechanisms, their operation methods 
are becoming more and more diverse. But they all have a 
common core idea: to apply greater attention weight to the 
more interesting aspects of the feature. 

C. Focal Loss 

Focal Loss [19] specializes in analyzing a group of sparse 
hard examples, which can effectively protect against massive 
easy negatives flooding the detector in training. Romdhane et al 
[20] optimized a deep CNN model with a new loss function 
named focal loss, for favorable performance in detecting 
certain heartbeat categories (particularly for unbalanced data 
sets). The evaluation results also tell that assisted with focal 
loss function the classification accuracy of minority ethnic 
classification and the overall index can be improved. Building 
upon the application of focal loss in image-based object 
detection, [21] introduces an extension of binary cross entropy 
for point cloud-based object detection. Their evaluation 
demonstrates that focal loss yields the most significant 
improvement in 3 dimensional object detection compared to 
other examined hyperparameters. Li et al [22] proposed focal 
loss and channel attention in network design for the purpose of 
enhancing feature representation learning and improving 
tracking performance with attention to the interdependence of 
channels and the data imbalance between foreground and 
background. Focal loss can be adopted in multiple practical 
applications, mainly to improve unbalanced number of difficult 
and easy samples, and it can improve network performance in 
different computer vision tasks. 

D. UAV 

Results have proved that UAVs enjoy autonomy and 
flexibility in varied situations and tasks, so they can be applied 
in various fields. Samaras et al [23] introduced the application 
of counter UAV related tasks to many different sensors data 
and the improvement of deep learning after fusioning 
information with multi-sensors to facilatate the future 
application of counter UAV. Barbedo et al [24] turned to drones 
and deep learning technology to monitor the herd. The 
experiment confirms the feasibility of animal detection and 
determines the ideal ground sample distance. Furthermore, in 
[25] the trade-offs of deep convolutional neural network-based 
object detectors were discussed, highlighting their ability to en- 

Algorithm 1:  
Flowchart of the proposed system for MCBS-APM 

Input: 
The latitude and longitude of the MCBS to be tested. 
Output: 
The APP interface displays the down-tilt angle d , area a , 
number of antennas n , and aspect ratio r of each antenna. 
Step1: Enter the longitude and latitude of the MCBS to be 
tested in the APP; 
Step2: UAV flies to the base station to be tested and orbits 
the base station according to preset parameters; 
Step3: UAV captures antenna video and transmits it to the 
server in real time via high-bandwidth 5G network; 
Step4: Algorithms in server process videos shot by UAV; 
Step5: The number of antennas n  is determined by the 
algorithms based on the pixel coordinates and threshold 
(with an empirical value of 50 for multiple verification); 
Step6: Algorithms segment antennas and measure 
parameters (aspect ratio r , are a and down-tilt d ) of 
antennas; 
Step7: App displays the antenna parameters measurement 
results; 
Step8: UAV returns and ends the measurement task. 
 
able UAVs to perform vehicle detection tasks in resource- 
constrained environments. According to Markov decision 
process and the partially observable one, Walker et al [26] 
designed a deep reinforcement learning framework for UAV 
indoor environment navigation. From all these fruitful 
achievements, it can be seen that UAVs with on-board cameras 
and computer vision functions of embedded systems widely 
enjoy increasing popularity in applications. 

III. PROPOSED SYSTEM AND METHOD 

With the above prior knowledge and our exploration in 
measuring the antenna, an effective as well as reproducible 
system was designed for evaluating the antenna whose 
operation under a novel instance segmentation network was 
demonstrated in algorithm 1. To begin with, antenna video data 
is collected by UAV conducting random flying around the base 
station. Afterwards, the data obtained including data preproce- 
ssing, instance segmentation, and antenna parameter fitting and 
measurement, is to be processed by the designed novel instance 
segmentation network; at length, the APP layout in mobile 
terminal displays the content obtained by UAV and the 
measurement results of antenna parameters, and monitors the 
flight status of UAV in real time throughout the entire process. 
Experiments have proved the feasibility of this proposed 
system, while the market has verified its reproducibility and 
portability. 

A. UAV Module 

In this work, we define some certain flight parameters such 
as a flight radius of 5m and a flight angular velocity of 3 /s so as 

to capture antennas images of mobile communication base  
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Fig. 2.  Samples of Antennascapes database: (a)-(d) from training set; (e)-(h) from testing set. 

 
stations in various scenes and weathers for establishing a 
dataset named Antennascapes including 1,500 training images 
and 219 testing images is divided with some samples presented 
in Figure 2. VIA (VGG Image Annotator), a tool annotating 
images with open source, is adopted to annotate the front, side 
and front side antennas of training set which only have the 
annotation of antennas but the angle information. In other 
words, their down-tilt angle and other parameters cannot be 
acknowledged. Then professional workers are required to 
adjust down-tilt angle to a certain value (detailed in Table ) to 
construct a testing set which are also captured by UAV. There 
are 219 images in testing set which have no annotations but 
angle information. The creation of a testing set can not only 
verify the robustness and accuracy of the proposed instance 
segmentation algorithm but also demonstrate the effectiveness 
of the designed antenna parameter measurement system. 

B. Instance Segmentation Module 

With the continuous change of crowd density, the frequency 
of antenna parameter measurement and down-tilt adjustment is 
getting higher and higher. Regarding the challenges above, 
traditional methods are conducted with labor, while SOTA 
methods rely on expensive hardware equipment. This paper 
designed a novel instance segmentation network to solve these 
industry issues and the flowchart of our proposed algorithm can 
be seen in algorithm 2. 

It is effective that the novel instance segmentation network is 
utilized to segment the antennas while a fitting and measuring 
module could get the antenna parameters using the pixel 
coordinate of segmented antennas. Figure 3 explains the 
architecture of proposed method. Among them, a basic network 
framework is built with the RetinaNet [27] based on FPN and 
resnet101. Masks for antennas in the proposed method are 
constructed through two simple parallel tasks, which is varied 
from traditional ones. Due to the utilization of fully connected 
layers in FCN to produce a group of prototype masks, which are 
identical in size to the primitive image, this turns into one 
parallel tasks. 

The other one requires an extra prediction head added to 
detection branch so as to predict  

Unfortunately, because Antennascapes precisely lack data 
with high possibility leading to training difficulties and  

 
overfitting, transfer learning [28] suitable for small samples, 
which is proved by many studies is introduced to dispose of the 
problem appropriately. 

Drawing inspiration from [17-18, 29], our design includes a 
dual attention module that refines the intermediate feature map 
at each convolutional block, utilizing both channel and spatial 
attention in turn. Since the assembly process is extremely 
lightweight, we can incorporate the dual attention module into 
every two convolutional layers seamlessly.  

The severe imbalance of the method in positive and negative 
samples was solved by the Focal Loss, which successfully 
lessens the weight of a huge amount of simple negative ones. 
We implemented several empirical studies with the above prior 
knowledge to prove the effectiveness of our designed network. 
Simultaneously, comparative experiments were conducted be-

Algorithm 2:  
Flowchart of designed instance segmentation network 

Input: 
A video of MCBS. 
Output: 
The number of antennas and their corresponding parameters. 
Step1: Input a video of mobile communication base station; 
Step2: Preprocessing module performs framing operations 
on the video and obtain antenna images; 
Step3: The framed images are successively processed to 
generate prototype masks p and their corresponding mask 

coefficients m ; 

Step4: Generate new prototype masks p using the most 

uncertain points extracted from the prototype masks and 
subsequently re-predicting the segmentation results; 
Step5: Calculate the mask M for each antenna by 

multiplying m and p , and applying a threshold filter; 

Step6: The antenna parameters are obtained by processing 
the mask M using a fitting and measurement module. 
Step7: The value of n , representing the number of antennas, 
is established by applying a threshold to pixel coordinates, 
whereby the value of multiple-verifications for the empirical 
parameter is set to 50. 
Step8: Number n of antennas, parameters of each antenna. 
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Fig. 3.  The structure of proposed dual attention measuring network. 

 

tween the proposed methods and existing ones on the same 
dataset, whose outcomes attest to the feasibility of lacking 
hardware in the designed instance segmentation network. 

a)     Instance Segmentation Module 

Serial logic can be implemented using two-stage models that 
utilize re-pooling operations like ROI (Region of Interest) [10, 
12]. However, alignment is required in [10] to map features to 
the bounding box, which makes it difficult to accelerate 
two-stage models. Despite efforts made by FCIS to parallelize 
re-pooling operations, it remains slow due to too many 
post-processing steps. In contrast, a full convolution model for 
segmenting instances in real-time [8] can achieve both 
precision and speed effectively. 

As the first instance segmentation model that operates in 
real-time as a one-stage model. It directly integrates the mask 
branch into the one-stage detection algorithm, eliminating the 
need for ROI pooling. Learning from [8,10], the proposed 
instance segmentation network detailed in Figure 3 adopts 
one-stage object detection structures and a mask branch for the 
segmentation of antennas, which can speed up segmentation 
with details listed in [30-31]. The construction of masks for 
antennas is implemented with two simple parallel tasks, which 
is different from traditional instance segmentation tasks, and 
adds a dual attention mechanism module between the 
convolutional layers. In one of the parallel tasks, semantic 
vectors produced by fully connected layers in FCN are used to 
create prototype masks that match the size of the original image. 
In another parallel task, an additional prediction head is 
integrated into the one-stage object detection branch. This 
makes predictions that aid in the one-stage object detection task. 

encode every anchor with the representation of instance in 
prototype space, which indicates the full utilization of the 
border of convolutional layers in engendering spatial coherent 
masks. Lastly, matrix multiplication is conducted to assemble 
with both spatial correlation preservation and one-stage model 
structure maintenance, featured with exceedingly efficient 
operation. 

b)     Transfer Learning  

Transfer learning can reduce data from new domains by 
transferring features in low and middle levels from a related 
problem to a new one. Hence, with the adoption of transfer 
learning in a model which conducts image recognition with a 

huge number of images, it can alleviate the obsession due to not 
enough samples in an effective manner and realize the likely 
favorable performance. In this paper, transfer learning is cap- 
able of offsetting the dearth of antenna samples in the proposed 
instance segmentation network and measuring system.  

The results obtained from the experiments effectively verify 
the function of transfer learning, whose theory is explained 
below. By utilizing knowledge taken from the source domain 

sD and the domain corresponding to sT and TT , transfer learning 

enhances the ability of the object prediction function ( (.))f T in

TD , where it is assumed that either the domains or learning 

tasks are different ( s TD D or s TT T ). For TD , a limited 

number of antenna samples are used, while sD consists of 

numerous images from various categories in MS COCO [32] or 
ImageNet [33]. Transfer learning is employed as a means of 
improving model performance as a result of the similarities 
between acquired models. 

c)     Dual Attention Mechanism 

The instance segmentation network proposed in this study 
incorporates a dual attention mechanism module (DAMM) that 
is simple yet effective. The module makes use of an 
intermediate feature map to determine the attention weight 
along the channel and spatial dimensions, which is then applied 
to the original feature map for feature adaptation. Since the 
assembly process stands extremely lightweight, any CNN 
architecture can seamlessly integrate the DAMM with minor 
extra overhead. DAMM is a powerful attention mechanism for 
deep neural networks that enhances the representational power 
of convolutional blocks and its key advantage lies in its ability 
to adaptively recalibrate feature maps in a channel-wise and 
spatial-wise manner, thereby improving the model's capability 
on various computer vision tasks. Any basic CNNs is suitable 
for the end-to-end training of the dual attention mechanism. 
Both of these details can be referred to Figure 4. 
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Fig. 4. illustrates the architecture of the dual attention module and its two 
sub-modules, namely the channel attention and spatial attention modules. 

 

The dual attention module consists of two sub-modules: the 
channel attention module and the spatial attention module. 
These sub-modules utilize max-pooling and average-pooling 
outputs and share a common network. The spatial attention 
module combines similar outputs along the channel axis and 
maps them to a convolutional layer. The channel attention 
module highlights important features, where each channel 
represents a detector. By employing max pooling and global 
average pooling, the module gathers spatial features and 
captures diverse feature information, as following: 

 
1 0 1 0

( ) ( ( ( )) ( ( )))

           (( ( ( )) ( ( ( )))

c MLP Avg MLP Max

C C
Avg Max

M F Sigmoid f Pooling F f Pooling F

Sigmoid W W F W W F
  (1) 

The input to the model consists of a feature map F with 
dimensions H W C . Initially, 1 1 C channel descriptors 
are derived from the feature map, employing both maximum 
pooling and global average pooling operations. Subsequently, 
these descriptors are passed through a standard two-layer 
neural network, wherein /C r  and C denote the number of 
neurons in the first and second layers, respectively, while ReLU 
represents the activation function. Subsequently, attention 
coefficients cM are generated by applying a sigmoid activation 

function to the obtained features. Multiplying these coefficients 
with the original feature F produces the new feature after 
scaling. Finally, the spatial attention module processes 
meaningful features using the equation shown below. 

7 7

7 7

( ) ( ([ ( ), ( )]))

           ( ([ ; ]))

s Avg Max

S S
Avg Max

M F Sigmoid f Pooling F Pooling F

Sigmoid f F F
              (2) 

Both attention modules utilize feature F , which represents 
the spatial dimensions H W C and the channel dimension C , 
as the input. Spatial attention module initiates with the 

introduction of an average and a max pooling of a channel 
dimension for two 1H W  channel description as well as for 
the splice of these two descriptions together according to 
channels. Subsequently, the weight coefficient is generated by 
passing through a 7×7 convolutional layer followed by a 
sigmoid activation function. Finally, multiplication is 
conducted on the feature F and the weight coefficient so as to 
obtain the new feature after scaling. Both of the attention 
modules are suitable for any basic CNNs regardless of how 
they are combined parallelly or sequentially. Experiments tell 
that sequential combination with channel attention mechanism 
placed ahead of spatial attention shows more favorable results. 
The two attention modules feature with the advantages of 
saving parameters and plug-and-play module into the current 
network architecture. 

d)     Focal Loss 

As we know, in object detection and instance segmentation, 
a single image can generate thousands of candidate positions, 
but only a few of them actually contain objects, resulting in 
imbalanced categories. This category imbalance can signific- 
antly impact the optimization direction of the model and lead to 
unsatisfactory outcomes. To address this, we incorporated focal 
loss, a variant of conventional cross-entropy loss, into our 
training process. Focal loss serves to downweight easily 
classified samples, placing emphasis on the more challenging 
ones and prioritizing their learning. Focal loss achieves this by 
introducing a tunable hyperparameter called the focusing 
parameter, which weakens the contributions of easy examples 
and hence emphasizes more on the hard ones. In this way, the 
focal loss helps to alleviate the effect of category imbalance and 
leads to more accurate object detection and instance 
segmentation. Focal Loss is shown here: 

t t t tFocalLoss(p )= - (1- y ) log(y )                       (3) 

When a sample is classified incorrectly, resulting in a small tp , 

the modulation factor (1 ty ) will be prone to 1, standing for no 

change with the comparison to the original loss; then the 
weights of the well-classified samples are adjusted down. On 
the contrary, when ty approaches to 1, it shows the correctness 

and easiness of the classification for samples, and meanwhile, 
when the modulation factor (1 ty ) is prone to 0, this sign 

represents the small contributions to the total loss. If 0 , we 

take the focal loss as the traditional cross-entropy loss. And

shows positive correlation with the modulation coefficient. The 
focus parameter smoothly reduces the proportion of the 

weights of easily separated samples. Increasing  enhances the 

influence of the modulation factor. It is proved by abundant 
experiments that 2 is the best value of . 

e)     Fitting and Measuring Module 

Least squares method, is adopted to facilitate the calculation 
of the antenna parameters through studying the connection 
between the masked pixels. Least squares method weighs 
heavily in the analysis with a large amount of data. The 
3/5-pixel value coordinates are obtained by removing the two 
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Fig. 5.  The flowchart of the algorithm proposal. 

 

 
Fig. 6.  The APP operational interface of the measurement system for antenna parameters . 

 
edge pixels on either side of the mask. These coordinates are 
specifically selected to accommodate the downward tilt angle 
of the antennas. Least square method is conducted for the 
purpose of fitting the selected pixels on two sides of antenna 
linearly to obtain a pair of slopes, and then calculate the 
arctangent of the pair of slopes to obtain the down-tilt angle of 
each side, finally the antenna down-tilt angle can be regarded as 
the average value of the antenna down-tilt angle of both sides. 
Based on the above prior knowledge and theoretical research, 
an overall description of the proposed instance segmentation 
algorithm is given. There are two stages in total. During 
training phase, transfer learning is for transferring the model 
trained by coco. After initializing the weights, the network is 
trained and the model is optimized using the training images 
from the constructed dataset. The dual attention module 
embedded between every two convolutional layers is used to 
make the network acquire more features from the target area, 
which should strengthen the model robustness. In the testing 
stage, the UAV flies around the base station to be tested to 
obtain antenna testing video, and transmits the obtained video 
to the server in real time through 5G transmission. And then the 
video is preprocessed by operations such as framing to obtain 
antennas testing images, and the optimal model is utilized to 
process these testing images to obtain the mask of each antenna. 
Finally, the fitting and measurement module is utilized to 
analyze each mask and extract the parameters of individual 
antennas. The overall framework of the proposed system is 

depicted in Figure 1, showcasing the key components and their 
interactions. Additionally, Figure 5 provides a comprehensive 
flow chart illustrating the algorithm designed for the system. 
These figures collectively present a visual representation of the 
system's architecture and algorithmic workflow. 

C. APP Module 

With the popularization of mobile Internet and technological 
development and progress, the focus of product has become 
one of the key issues that users pay attention to. To this end, we 
have developed an Android Application (APP) to perfect the 
system for measuring the antenna parameters in mobile 
communication base station. The main functions of this APP 
are to control and monitor the flight status of UAV, display the 
flight parameters of UAV and the measurement results of each 
antenna parame- ters to ensure a better user experience. With 
the app being put into use, facts have proved that it is effective 
for improving work efficiency. The operation interface of part 
of the APP is shown in Figure 6. The figure shows that our 
proposed system is performing antenna parameter measure- 
ment, and the measurement result has also been returned to the 
APP interface. 

IV. EXPERIMENTAL ANALYSIS 

We arrange a Core i9 CPU computer with 64G memory and 2 
Titan RTX graphic cards with 48G in the experiments. Further-
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(a)                                              (b)                                                (c)                                            (d) 

Fig. 7.  Outputs from every dual attention module on resnet50, in which the former two images are at down-tilt angles of 5 and 12 while (a)-(d) separately refer to the 
attention maps between every two convolutional layers. 

 
TABLE  

EXPLANATION OF ANTENNASCAPES 
 Number Annotation Angel Information 

Training set 1500   
Testing set 219   

 
TABLE  

DISTRIBUTION OF THE TESTING SET 
Testing set including information on angel investors 

Angel 1° 4° 5° 6° 7° 8° 9° 12° 15° 
Number 13 25 22 30 25 23 22 39 20 

 
TABLE  

RESULTS OF COMPARING VARIOUS TRANSFER MODELS 
 MS COCO [32] ImageNet [33] 

T F T F 
Segmentation accuracy 87.73% 72.90% 86.91% 72.90% 

Fitting accuracy 70.83% 59.68% 70.09% 59.68% 

 
TABLE  

A COMPARISON TABLE IS PRESENTED FOR THE RESULTS OBTAINED FROM 

VARIOUS FEATURE EXTRACTION NETWORKS, WITH AND WITHOUT THE 

APPLICATION OF DUAL ATTENTION MECHANISM. 
 Resnet101(%) Resnet50(%) Darknet53(%) 

T F T F T F 
Segmentation accuracy 63.54 63.22 72.91 61.73 68.71 67.07 

Fitting accuracy 51.63 38.83 59.68 37.83 47.59 35.36 

 
more, we also adopt pytorch1.1.0 and Ubuntu18.04 operating 
system. A dataset called Antennascapes which is full of natural 
scenes from low-altitude areas is established consis- ting of 
1500 training images and 219 testing images. Some images 
from the database are shown in Figure 3. Because all the images 
are shot by UAV flying around the station, they all possess 
higher resolution than MS COCO [32] and ImageNet [33] and 
more favorable pixel preciseness for GT instance segmentation. 
The training set consists of 1500 artificially and accurately 
labeled images, while the testing set consists of 219 images that 
were manually labeled at specific angles (1-degree, 4-degree, 
5-degree, 6-degree, 7-degree, 8-degree, 9-degree, 12-degree, 
and 15-degree) to test the pre

 

A. Analysis of Transfer Learning 

For the positive correlation between the training samples 
quantity and the trained model accuracy, we introduce transfer 

learning method to make up for inadequate samples. The 
weights from models trained on MS COCO and ImageNet are 
used for initialization to prevent random weight initialization. 
The model only uses the resnet50 and FPN modules to transfer 
weights from these models. Table  displays the segmentation 

and fitting accuracies achieved by this approach. The T
column stands for the designed network with transfer learning 

F
transfer learning. After the comparison, it is known that a more 
favorable accuracy in both segmentation and fitting is realized 
in MS COCO dataset model through the weight initialization of 
MS COCO dataset model, compared with that in ImageNet 
dataset model. Apparently, with the assistance of transfer 
learning, a favorable growth can be observed in both of the 
accuracies. These obvious performances can be convincing that 
transfer learning can tremendously raise the accuracy in 
segmentation among tasks with small samples. 

B. Analysis of Dual Attention Mechanism 

We train all models at the batch size of 16 on two GPUs 
transferring MS COCO pre-trained model which has been 
experimentally proved that the performance is better than when 
using ImageNet pretrained model. The pretrained batch 
specification is not frozen and an additional BN layer is not 
added since the arranged batch size is able to adequately meet 
the standard of batch norm. The model is trained using SGD 
with an initial learning rate of 10-4 for 10000 iterations. The 
learning rate is divided by 10 at iterations 2000, 7000, 8000, 
and 8500, with a momentum set at 0.9 and a score threshold of 
0.247. Weight decay of 55e  is employed, and all data 
augmentations are carried out in SSD. The processing of our 
1500 training images costs 10 to 12 days. 

Figure 3 shows the distribution of section 3, in which every 
two convolutional layers are inserted with the dual attention 
(channel attention ahead of spatial attention). We evaluate the 
effectiveness of our dual attention module by combining 
various feature extraction networks (resnet101, resnet50, 
darknet53) and the FPN network. The evaluation is conducted 
under the pre-training model of MS COCO, and the specific 
comparison results are presented in Table IV. In this 
comparison, the segmentation accuracy is measured as the ratio 
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Fig. 8. The testing image contains data for an antenna with an actual down-tilt angle of 12 degrees. The measured down-tilt angle is recorded as 12.03 degrees. 

 
TABLE  

PERFORMANCE COMPARISON OF BACKBONE MODELS USING MULTIBOX LOSS  

Backbone 
Segmentation 

accuracy 
Fitting 

accuracy 
Time(s) 

Resnet101 63.54% 51.63% 0.15 
Darknet53 68.71% 47.59% 0.13 
Resnet50 72.91% 59.68% 0.14 

 
TABLE  

COMPARISON OF RELATED METHODS ON THE SAME DATASET 
Loss Segmentation accuracy Fitting accuracy Time(s) 

Multibox[31]  72.91% 59.68% 0.14 
Triplet[34] 75.24% 67.48% 0.12 
Center[35] 100% 80.16% 0.14 
Circle[36] 100% 80.25% 0.12 

Focal 100% 85.17% 0.13 

 
TABLE  

MEAN ERROR AND VARIANCE ANALYSIS 
GT Angle 
(degree) 

1 4 5 6 7 8 9 12 15 

Mean error 0.42 0.34 0.75 0.26 0.09 0.19 0.09 0.17 0.35 

Variance 0.09 0.46 0.17 0.15 0.43 0.30 0.06 0.14 0.12 

 
TABLE  

COMPARISON OF THE PROPOSED METHOD WITH OTHER EXISTING METHODS ON 

THE SAME DATASET 

Method Backbone 
Segmentation/ 

Detection 
accuracy 

Fitting 
accuracy 

Time 
(s) 

Faster R-CNN [12] Resnet101 89.85% - 3.08 

YOLOv3[30] Darknet53 92.72% - 0.01 

YOLOX-S [37] Darknet53 85.95% - 0.01 

YOLOX-M [37] 
Modified 

CSP 
94.48% - 0.22 

DETR [38] Resnet50 91.22% - 0.59 
CenterNet [39] DLA-34 98.80% - 0.03 
R-CenterNet DLA-34 98.80% 74.33% 0.04 
S2ANet [41] Resnet50 90.01% 61.33% 0.06 

Mask R-CNN [10] Resnet101 99.44% 58.20% 5.95 
Ours Resnet50 100% 85.17% 0.13 

 
of segmented non-back antennas to all non-back antennas. 
What is more, most often, less than 1-degree deviation between 
measured and real value can be overlooked in practice. 
Therefore, we can define fitting accuracy as the proportion of 
the amount of segmented front-side antennas, whose down-tilt 
angles are evaluated within 1  compared to the real down-tilt 

angles of the quantity of detected front-side antennas. 

of a dual attention mechanism module within the network. In 
Table , it is written with the best segmentation accuracy at 
72.91% and fitting accuracy climbs to 59.68%. This 
performance belongs to resnet50 with dual attention. We 
compare the figures also from resnet50 but without attention 
mechanism, which are listed in the next column. The figures 
present a great improvement in the accuracy of segmentation 
and fitting. Attention maps engendered from dual attention 
module in resnet50 with FPN can be referred to Figure 7. The 
theory in these images is that the red color positively correlates 
to the contribution made to the final prediction result while the 
blue color does the opposite. 

C. Analysis of Focal Loss 

We compare segmentation accuracy, detection accuracy, 
fitting accuracy and time spending of proposed method with 
other current Loss Functions including Multibox Loss [31], 
Triplet Loss [34], Center Loss [35], and Circle Loss [36]. The 
training strategy and all data augmentations in this work are 
based on SSD, so is Loss function. Therefore, under the 
premise of controlling the same training strategy and evaluation 
criteria, Multibox Loss is introduced to the proposed method to 
conduct experiments on different backbones which are detailed 
in Table  to find the best performing backbone on our instance 
segmentation task. It is proved that when the backbone is 
Resnet50, the test evaluation criteria are the best. Then, the 
feature extraction network was unified as resnet50, and we 
conducted comparative experiments with different loss 
functions. Table  describes that when focal loss is adopted to 
our network, the segmentation accuracy and fitting accuracy 
perform best. Finally, Comparative experiments between 
methods which are detailed in Table  are conducted with the 
same dataset. 

D. Analysis of Fitting and Measuring Module 

In Figure 3, the Fitting and Measuring module is imposed to 
fit and measure parameters of mask of each antenna output by 
the instance segmentation network. This work requires 
professional workers to adjust the down-tilt angle for daily use 
and compares it with the results of our proposed algorithm 
within the allowable error range so that the Fitting and 
Measuring module can verify itself. In measuring the antenna 
parameters, measurement errors within one degree are allowed. 
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An image in testing set with actual down-tilt angle as 12 degree 
is processed by our proposed network to get the antennas masks, 
and the Fitting and Measuring module is adopted to measure 
the down-tilt angle. Figure 8 clearly shows that the 
measurement result is 12.03 degree. It is surprised to find that 
the measurement result of our proposed system is not only 
infinitely close to the actual angle but also exceeds most of the 
manual random measurement results. 

Our method demonstrates inspiringly satisfying performance 
in the discussed field compared to current advanced methods, 
which indirectly proves and emphasizes the potency and 
essentialness of dual attention mechanism by transfer learning. 
Table  provides enough data to choose the 
best-performance model through the comparison of the 
deliberated and the actual angles. Since the error value of each 
group is less than 1 degree, it conforms to the requirement of 
the industry. Meanwhile, we have conducted a mean error and 
variance analysis of the proposed method. Among them, error 
is the numerical value of the deviation between the true and the 
measured value. From Table , it can be reached that the 
proposed system has well performance of good effectiveness 
and stability and the measurement results are not volatile from 
mean error and variance analysis. It is surprising that 
fluctuation can be barely observed at the same angle according 
to the error analysis in testing set. This attests to the outstanding 
stability and reliability of the proposed system in this work. 

E. Comparisons of other SOTA Methods 

In Table VIII, the proposed approach is compared with the 
current most advanced models, and Resnet50 is used as a 
feature extraction network. The evaluation metrics applied 
contain detection accuracy, segmentation accuracy, fitting 
accuracy and time cost. It has been shown that our approach 
surpasses all other methods in these aspects. Notably, since the 
object detector head outputs an axis-aligned bounding box, 
only the detection accuracy can be compared, and the fitting 
accuracy is not reported. To enhance the orientation prediction, 
we incorporated a branch for predicting the rotation angle of the 
bounding box in CenterNet's [39] head, which transformed it 
into a rotating object detector. The accuracy rate of the 
inclination angle measurement for the test set was 74.33%, 
whereas S2ANet [40] achieved a measurement accuracy of 
61.33% following the same bounding box rotation angle 
prediction principle. Nonetheless, experiments further 
demonstrate that the rotating object detector can only offer a 
rough estimation of the object's orientation and cannot be 
applied to the precise angle measurement scene since the 
inconsistency of angular boundaries is a long-standing 
bottleneck and challenge of the orientation detector. 
Conversely, the proposed method attained a detection accuracy 
of 100% and a fitting accuracy of 85.17% in the test set, and the 
average measurement time for all segmented antennas in the 
image was 0.13s, surpassing the accuracy of segmentation and 
fitting. Verification by some existing deep learning-based 
detection methods and instance segmentation algorithms has 
shown that our method is effective. 

V. CONCLUSION 

We present an innovated measurement method for antenna 
parameters measurements in mobile communication base 
station, which replaces traditional measurement methods with 
human labor involved. A novel instance segmentation 
framework is designed with the employment of dual attention 
module. The combination of fitting module and Focal loss can 
accelerate the evaluation of antenna parameters. After complete 
experiments, we can acknowledge that the adoption of proper 
training strategies can produce satisfying performance in the 
automatic measurement of antenna parameters. Comparisons 
conducted among current instance segmentation algorithms and 
detection algorithms derived from deep learning methods and 
our method verify the predominant performance of our method 
in rapid recognition and favorable fitting accuracy. Moreover, 
our proposed method stands with less manual interference, 
better efficiency and higher safety than the traditional methods. 
At length, it is forecast that our proposed method for antenna 
parameters measurement will occupy a significant place in 5G 
era featured with high bandwidth and concurrency and low 
latency. 

However, there are still many research challenges in this 
work. When deploying the model in real industrial scenarios, it 
relies on high-configured servers, and the remote server is 
affected by the network signal from the local end. To achieve 
long-term fully autonomous AI measurements, the algorithm 
needs to be lightweight and directly integrated into the drone 
flight system to break free from the constraints of servers and 
devices. Furthermore, the proposed method can currently only 
measure the down-tilt angle of antennas. The automatic 
measurement of more antenna parameters, like azimuth angle 
and weak coverage areas, has yet to be resolved. 

REFERENCES 

[1] Nature, vol. 521, no. 
7553, pp. 436 444, May, 2015. 

[2] 
Communications of the ACM, vol. 60, no. 6, pp. 84

90, June, 2017. 
[3] 

Underlaid Device-to-Device Communication, IEEE Systems Journal, 
vol. 13, no. 3, pp. 2551 2554, Sep, 2019. 

[4] nt 
ZTE Communications, vol. 4, no. 16, 

pp.38-45, 2020. 
[5] 

in Proceedings of 
20th International Symposium on Wireless Personal Multimedia 
Communications (WPMC), Indonesia, Yogyakarta, 2017, pp. 124-130.  

[6] 

no. 3, pp. 171 189, June. 2020. 
[7] - in Proceedings of 2019 

IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), California, USA, 2019, pp. 6409 6418. 

[8] -Time Instance Seg In 
Proceedings of 2019 IEEE/CVF International Conference on Computer 
Vision (ICCV), Korea, Seoul, 2019, pp. 9157 9166. 

[9] Bai M, Urtasun R Deep Watershed Transform for Instance Segmentation. In: 
2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 21-26 July 2017 2017. pp 2858-2866.  

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3297991

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on July 26,2023 at 08:37:27 UTC from IEEE Xplore.  Restrictions apply. 

VIII

LeCun. Y, Bengio. Y, and Hinton. G, “Deep Learning,”

Kn'zhevsky, Alex, et al., “ImageNet Classification with Deep Convolutional
Neural Networks,” —

Lee, Woongsup, et a1. “Deep Learning Based Transmit Power Control in

Kun. X,  Guo. T,  Zhou. Y,  et al., “Antenna Mechanical Pose Measureme
Based on Structure from Motion,”

Pedras. V,  Sousa. M,  Vieira. P ,  et al., “Antenna tilt optimization using a
novel QoE model based on 3G radio measurements”,

Hafiz. A, and Ghulam. M, “A Survey on Instance Segmentation: State of the
Art,” International Journal of  Multimedia Information Retrieval, vol. 3 ,

Huang, Zhaojin, et al., “Mask Scoring R CNN.”

Bolya. Daniel, et al., “YOLACT: Real mentafion,”



TAI-2022-Nov-A-00801 11 

[10] He. K, Georgia. G, Piotr. D, -CNN, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 
Feb. 2020. 

[11] - in Proceedings of 2015 IEEE 
International Conference on Computer Vision (ICCV), Santiago, Chile, 
2015, pp. 1440 1448.  

[12] Ren. S, He. K, Girshick. R, -CNN: Towards Real-Time Object 
Detection with Region Proposal Networks, IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 
June. 2017. 

[13] 
Semantic Segmentatio IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 39, no. 4, pp. 640-651, Apr.  2015. 

[14] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, 
in proceedings of 

2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), Honolulu, HI, 2017, pp. 936-944. 

[15] Vaswani. A, Shazeer. N, Parmar. N, et al., ,
in Proceedings of the International Conference on Neural Information 
Processing Systems, Vancouver, Canada, 2017, pp. 5998 6008. 

[16] -  in 
proceedings of 2018 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), Salt Lake City, UT, 2018, pp.7794-7803. 

[17] Woo. S, Park. J, Lee. J, Kweon. I, 
Attention Module,  in Proceedings of the European Conference on 
Computer Vision (ECCV), Munich, Germany, 2018, pp. 3 19. 

[18] J. Fu, et al., "Dual Attention Network for Scene Segmentation," 2019 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
Long Beach, CA, USA, June 2019, pp. 3141-3149. 

[19] T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense 
Object Detection," in IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 42, no. 2, pp. 318-327, Feb. 2020.  

[20] 

Computers in Biology and Medicine, vol. 123, pp. 103866-103887, Aug, 
2020.  

[21] Yun P IEEE 
Robotics and Automation Letters, vol. 4, no. 2, pp. 1263-1270, Apr, 
2019. 

[22] 
Neurocomputing, 401: 295-307, Aug, 2020. 

[23] Samaras S, Diamantidou E, Ataloglou D, et al., Deep learning on multi 
sensor data for counter UAV applications
Sensors, vol. 19, no. 22, pp. 4837-4871, Nov, 2019. 

[24] A study on the 
Sensors, vol. 19, 

no. 24, pp. 5436-. Dec, 2019. 
[25] 

convolutional neural network detector for real-
In Proceedings of 2018 Design, Automation & Test in Europe 
Conference & Exhibition (DATE), Dresden, Germany, 2018, pp. 
967-972. 

[26] 
In Proceedings 

of 2019 IEEE Aerospace Conference. Yellowstone, USA, 2019, pp. 
1-14. 

[27] 
for Single- in 2019 British Machine Vision 
Conference (BMVC), Cardiff University, United Kingdom, Sep, 2019, 
pp. 227-238. 

[28] IEEE Transactions on 
Knowledge and Data Engineering, vol. 22, no. 10, pp.1345  1359, Oct. 
2010. 

[29] e 
Architecture for Attention-
IEEE Systems Journal, vol. 14, no. 1, pp. 1325 1332, Mar, 2020. 

[30] ArXiv 
Preprint ArXiv:1804.02767, Apr. 2018. 

[31] Liu. W, Anguelov. D, E -Box 
 in Proceedings of European Conference on Computer Vision 

(ECCV), Amsterdam, Netherlands, 2016, pp. 21 37. 
[32] 

 in Proceedings of European Conference on 
Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 740 755.  

[33] -Scale Hierarchical 

Computer Vision and Pattern Recognition (CVPR), Florida, USA, 2009, 
pp. 248 255. 

[34] F. Schroff, D. Kalenichenko and J. Philbin, "FaceNet: A unified 
embedding for face recognition and clustering," in Proceedings of 2015 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
Boston, MA, 2015, pp. 815-823. 

[35] 
in Proceedings of European Conference on 

Computer Vision (ECCV), Amsterdam, Netherlands, 2016, pp. 499 515. 
[36] e Loss: A Unified Perspective of Pair Similarity 

Optimization, 2020 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), online, 2020, pp. 6398 6407. 

[37] in Proc. 
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021. 

[38] Carion, Nicolas, et al. -to-
in Proc. Eur. Conf. Comput. Vis. (ECCV), Glasgow, UK, Aug. 2020, pp. 
213 229.  

[39]  in Proc. IEEE Conf. Comput. 
Vis. Pattern Recognit. (CVPR), Long Beach, CA, USA, Jun. 2019. 

[40] 
IEEE Trans. Geosci. Remote Sens., 2021. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ying Xu received the B.S. and M.S. degrees 
in Automation, and Control Engineering 
from Wuhan University of Science and 
Technology in 2004 and 2008, respectively. 
She also received her Ph.D. in South China 
University of Technology in 2013.  

She joined Wuyi University in 2008, and 
her research interests include: intelligent 
signal processing and pattern recognition. 

 
 
 

 
Qirui Ke is currently pursuing his Master 
in Department of Intelligence Manufact- 
uring, Wuyi University. He received his 
B.S. degree at Hubei University of Arts 
and Science in 2018. His research interests 
include: pattern recognition and automatic 
measuring. 
 

 
 
 

 

Ziyi Jiang is currently pursuing his Master 
in Department of Intelligence Manufact- 
uring, Wuyi University. He received his 
B.S. degree in Wuyi University, Jiangmen 
in 2019. His research interests include: 
image processing, pattern recognition and 
automatic measuring. 

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3297991

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on July 26,2023 at 08:37:27 UTC from IEEE Xplore.  Restrictions apply. 

“Mask R ”

Girshick, Ross. “Fast RCNN,”

“Faster R

Shelhamer. E ,  J, and Darrell. T ,  “Ft Convolutional Networks for
n,”

“Feature Pyramid Networks for Object Detection,”

“Attention Is All You Need ”

Wang X,  Girshick R,  Gupta A, et al., “Non local neural networks,”

“CBAM: Convolutional Block

Romdhane T F, Pr M A. “Electrocardiogram heartbeat classification
based on a deep convolutional neural network and focal loss,”

, Tai L,  Wang Y ,  eta1., “Focal loss in  3d  object detection,”

Li D ,  Wen G,  Kuai Y,  et al., “Robust visual tracking with channel
attention and focal loss,”

“

—A systematic review,”

Barbedo J G A,  Koenigkan L V,  Santos T T,  e t  al., “
detection of  cattle in UAV images using deep learning,”

Kyrkou C ,  Plastiras G,  Theocharides T ,  et al., “DroNet: Efficient
time UAV applications,”

Walker 0 ,  Vanegas F ,  Gonzalez F ,  e t  al., “A deep reinforcement learning
framework for uav navigation in  indoor environments,”

Zhang, Hongkai, et al., “Cascade RetinaNet: Maintaining Consistency
Stage Object Detection,”

Pan. S ,  and Yang. Q .  “Transfer Learning,”

Mukheijee, Anandarup, et al. “MiND: Mind Networked Devic
Gated Ambient Assisted Living Systems.”

Redmon. J ,  Ali. F ,  “YOLOV3: An Incremental Improvement,”

than. D ,  et al., “SSD: Single Shot Multi
Detector,”

Lin. T,  Maire. M,  Belongie. S ,  et al., “Microsofl  COCO:  Common
Objects in  Context,”

Jia. D ,  Wei. D ,  Socher. R,  et al., “ImageNet: A Large
Image Database,” in Proceedings of  2009 lEEE Conference on

Wen, Yandong, et al. “A Discriminative Feature Learning Approach for
Deep Face Recognition,”

Sun, Yifan, et a1. “Circl

Ge,  Zheng, et al., “Yolox: Exceeding Yolo Series in  2021,”

, “End End Object Detection with Transformers,”

Zhou, Xingyi, et al., “Objects as  Points,”

Han, J iaming, et al., “Align Deep Features for Oriented Object Detection,”



TAI-2022-Nov-A-00801 12 

Yikui Zhai is an Associate Professor at 
Wuyi University, Guangdong, China. He 
was a visiting scholar at the University of 
Milan, Department of Computer Science, 
since 2016. He received his Ph. D degree in 
Signal and Information Processing at Bei 
hang University in June 2013. He received 
the Bachelor and Master degree in Optical 

Electronics Information and Communication Engineering, and 
Signal and Information Processing from Shantou University, 
Guangdong, China in 2004 and 2007 respectively.  

Since October 2007, he has been working at Department of 
Intelligence Manufacturing, Wuyi University, Guangdong, 
China, and his research interests include: image processing, 
deep learning and pattern recognition. 
 
 
 

Angelo Genovese received the Ph.D. 
degree in computer science from the 
Università degli Studi di Milano, Crema, 
Italy, in 2014. He has been a postdoctoral 
Research Fellow in computer science with 
the Università degli Studi di Milano since 
2014. 

He has been a Visiting Researcher with 
the University of Toronto, Toronto, ON, 

Canada. Original results have been published in over 30 papers 
in international journals, proceedings of international 
conferences, books, and book chapters. His current research 
interests include signal and image processing, three- 
dimensional reconstruction, computational intelligence 
technologies for biometric systems, industrial and 
environmental monitoring systems, and design methodologies 
and algorithms for self-adapting systems. 

Dr. Genovese is an Associate Editor of the Journal of 
Ambient Intelligence and Humanized Computing (Springer). 

 
 
 

Vincenzo Piuri (Fellow, IEEE) received 
the M.S. and Ph.D. degrees in computer 
engineering from Politecnico di Milan, 
Milan, Italy, in 1984 and 1988, 
respectively. 

He was the Department Chair with the 
University of Milan, Milan, from 2007 to 
2012, where he has been a Full Professor 
since 2000. He was an Associate Professor 

with Politecnico di Milan from 1992 to 2000, a Visiting 
Professor with The University of Texas at Austin, Austin, TX, 
USA from 1996 to 1999, and a Visiting Researcher with 
George Mason University, Fairfax, VA, USA, from 2012 to 
2016. He founded a startup company, Sensure srl, Bergamo, 
Italy, in the area of intelligent systems for industrial 
applications (leading it from 2007 to 2010) and was active in 
industrial research projects with several companies. His main 
research and industrial application interests are intelligent 
systems, computational intelligence, pattern analysis and 
recognition, machine learning, signal and image processing, 

biometrics, intelligent measurement systems, industrial appli- 
cations, distributed processing systems, Internet-of-Things, 
cloud computing, fault tolerance, application-
processing architectures, and arithmetic architectures.  

Dr. Piuri is an ACM Fellow. 
 
 
 
 

Fabio Scotti (Senior Member, IEEE) 
received the Ph.D. degree in computer 
engineering from the Politecnico di Milan, 
Milan, Italy, in 2003. 

He has been an Associate Professor of 
computer science with the Universitá 
degli Studi di Milan, Crema, Italy, since 
2015. His original results have been 
published in more than 100 articles in 

international journals, proceedings of international conferences, 
books, book chapters, and patents. His research interests 
include biometric systems, machine learning and 
computational intelligence, signal and image processing, theory 
and applications of neural networks, 3-D reconstruction, 
industrial applications, intelligent measurement systems, and 
high-level system design. 

Dr. Scotti is an Associate Editor with the IEEE Transactions 
on Human-Machine Systems and Soft Computing (Springer). 
He has been an Associate Editor with the IEEE Transactions on 
Information Forensics and Security, and a Guest Coeditor for 
the IEEE Transactions on Instrumentation and Measurement. 

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3297991

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on July 26,2023 at 08:37:27 UTC from IEEE Xplore.  Restrictions apply. 

specific digital


