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Abstract: Adductor spasmodic dysphonia is a type of adult-onset focal dystonia characterized by
involuntary spasms of laryngeal muscles. This paper applied machine learning techniques for the
severity assessment of spasmodic dysphonia. To this aim, 7 perceptual indices and 48 acoustical
parameters were estimated from the Italian word /a’jwOe/ emitted by 28 female patients, manually
segmented from a standardized sentence and used as features in two classification experiments.
Subjects were divided into three severity classes (mild, moderate, severe) on the basis of the G
(grade) score of the GRB scale. The first aim was that of finding relationships between perceptual
and objective measures with the Local Interpretable Model-Agnostic Explanations method. Then,
the development of a diagnostic tool for adductor spasmodic dysphonia severity assessment was
investigated. Reliable relationships between G; R (Roughness); B (Breathiness); Spasmodicity; and the
acoustical parameters: voiced percentage, F2 median, and F1 median were found. After data scaling,
Bayesian hyperparameter optimization, and leave-one-out cross-validation, a k-nearest neighbors
model provided 89% accuracy in distinguishing patients among the three severity classes. The
proposed methods highlighted the best acoustical parameters that could be used jointly with GRB
indices to support the perceptual evaluation of spasmodic dysphonia and provide a tool to help
severity assessment of spasmodic dysphonia.

Keywords: spasmodic dysphonia; voice assessment; acoustical analysis; BioVoice; machine
learning; LIME

1. Introduction

Dystonia refers to a set of movement disorders typically characterized by involuntary
sustained or intermittent muscle contractions that may affect anatomical areas, such as neck
muscles (cervical dystonia); the orbicularis oculi muscles (blepharospasm); or laryngeal
muscles, causing laryngeal dystonia [1]. This latter condition is characterized by a relatively
low prevalence, 1 ÷ 100,000 [2]. Two main different types of laryngeal dystonia have been
described: adductor spasmodic dysphonia (AdSD) and abductor spasmodic dysphonia
(AbSD), which rarely occur together [1,3]. AdSD represents an impairing disease that affects
adductor muscles of the vocal folds during phonation, causing irregular voice breaks and a
typically strained, strangled voice; it is the most common type of spasmodic dysphonia
(SD), affecting 90% of cases [2], with a female predominance and an average age of onset at
45 years [2]. Spasms tend to occur during vowel emissions, mainly during the glottal stop
between them [1]. AbSD concerns vocal fold abductor muscles, causing glottis opening
during voice production and consequent breathy vocal breaks, especially when a voiceless
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consonant comes before a vowel [1]. Patients commonly perceive high voice fatigue due to
the respiratory effort required to produce an intelligible word or sentence.

SD can have a devastating negative impact on verbal communication and on social
and professional relationships. Indeed, in the most severe cases, speech fluency is highly
reduced, and intelligibility is strongly compromised. SD etiopathogenesis remains unclear:
early studies assumed psychosomatic causes, but it was later found out that patients
diagnosed with SD showed central nervous system anomalies [2]. In more recent studies,
thanks to neuroimaging techniques such as PET and fMRI, SD was associated with disorders
of the basal ganglia and cerebellum [2,4]. The review by Hintze et al. [2] highlighted
three possible neurological mechanisms: reduced cortical inhibition, sensory processing
disturbances, and neuromorphological alterations.

At present, the diagnostic assessment of SD is mainly based on clinical investigation
and on perceptual voice evaluation, but some methods based on acoustical and aerody-
namical parameters have been proposed to define voice characteristics of AdSD patients,
mainly for pre-post treatment comparison [5–7]. Such methods can be used in the clinical
assessment of SD; however, perceptual indices present limitations due to subjectivity and
possible different levels of experience of the examiners [8].

The lack of strict scientific criteria and objective means makes SD diagnosis difficult
and leads to diagnostic delays: a study [9] evaluated a delay of about 4.43 years before the
correct diagnosis, due to similar clinical features such as muscle tension dysphonia (MTD),
at least in its hyperkinetic form, and essential tremor. Indeed, this latter disorder, character-
ized by more regular oscillations of multiple laryngeal muscles, is not easily distinguished
from SD because its rhythmic patterns can be related to apparently regular voice breakings
caused by SD. Similarly, MTD presents multiple laryngeal muscle contractions, leading
to a strained voice. Nevertheless, significant differences were observed for AdSD but
not for MTD between sustained vowels and connected speech voice samples through the
Cepstral Spectral Index of Dysphonia assessment [8], supporting the assumption of MTD
being task independent. These results suggested that particular voice features obtained
with objective acoustical analysis may represent relevant biomarkers in SD assessment.
Moreover, machine learning strategies have been widely implemented in the last decades
to automatize these tasks. As far as the distinction between healthy subjects (HS) and SD
patients is concerned, Schlotthauer et al. [10] obtained 93% accuracy applying an artificial
neural network and support vector machine techniques (SVM) to the sustained vowel /a/.
A similar result with 95% accuracy was achieved by Costantini et al. [11] with Naïve Bayes,
SVM, and Multilayer Perceptron models using features extracted from the sustained vowel
/e/. Powell et al. [12] managed to distinguish seven voice pathologies from HS, including
SD, with 55% overall accuracy. This result was slightly improved by Hu et al. [13], who
obtained 67% accuracy when considering four diseases and HS. In Fang et al. [14], a deep
neural network was applied to eight vocal illnesses and HS with an overall accuracy of
90% for female subjects. In this latter paper, however, no distinction was made between
AdSD and vocal tremor as they were generically labelled as laryngeal dystonia. Finally,
acoustical analysis and machine learning have been used also to assess the effectiveness
of SD treatments: Suppa et al. [7] highlighted that botulinum neurotoxin type A injection
improved voice quality, although it was not completely restored, while Prudente et al. [4]
proved that repeated transcranial magnetic stimulation provided significant improvements
to four acoustical parameters. However, to the authors’ knowledge, no study focused on
the analysis of both perceptual and objective parameters to assess severity of AdSD, and at
present, little attention has been paid to possible relationships between them.

The purpose of this work was to investigate the implementation of acoustical analysis
combined with machine learning algorithms to develop a non-invasive system characteriz-
ing the severity of AdSD. Specifically, it aimed at finding possible relationships between
objective parameters and perceptual indices and evaluating AdSD severity through ma-
chine learning voice assessment (MLVA) techniques. This approach could support speech
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pathologists and otolaryngologists in grading AdSD severity and in monitoring its evolu-
tion over time and treatment [15].

2. Material and Methods

Voice samples were collected from 28 female patients (mean = 64.6 years, std = 11.6 years)
diagnosed with AdSD and recruited at Ospedale Maggiore Policlinico Milano, Milano, Italy.
Four male patients were recorded as well, but they were excluded from further analyses to
avoid unbalanced data issues.

Each patient underwent a complete phoniatric investigation including videolaryn-
gostroboscopy. The diagnosis was unanimously made by a team consisting of a highly
experienced laryngologist and two voice therapists, both with a long period of experience
with SD patients. Several patients were known to suffer from SD for years and had already
been successfully treated with botulinum toxin.

All subjects uttered only once, at comfortable pitch and loudness, an Italian standard-
ized sentence rich in vocalic sounds and constantly voiced: “il bambino ama le aiuole
della mamma” (“the child loves mother’s flowerbeds”). Recordings were collected anony-
mously with smartphone-integrated microphones in a controlled (quiet) room. This study
was approved by the Institutional Review Board of the Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico, Milano, Italy, and informed consent was obtained from
each participant.

2.1. Perceptual Parameters

Perceptual evaluation of the whole sentence was performed blindly by three indepen-
dent judges with experience in voice disorders (1 otolaryngologist and 2 voice therapists),
and scores were averaged. The scores ranged from 0 to 10, where 0 is the rating for the worst
voice condition and 10 for the best one. Seven perceptual parameters were considered.
Three of them were taken from the GRB scale proposed by Hirano [16] for voice assessment:

• G (global grade of dysphonia): the judgement is based on the overall impression of
voice quality deterioration;

• R (Roughness): the impression of irregular F0 and of noise;
• B (Breathiness): turbulent noise related to air escape through the vocal folds.

The GIRBAS scale, derived from [16], represents the most used protocol for voice
assessment and is currently suggested for clinical research by the European Research
Group [17] and the Società Italiana di Fonologia e Laringologia [18]. Indices I, A, and S
were not included in this work as they are less reliable in clinical settings [19].

Other four perceptual parameters were taken from the IINFVo scale that was defined
for substitution voicing assessment by Moerman et al. [20] and later validated by Siemons-
Luhring [21] for SD assessment as well:

• I (Intelligibility): the impression of the possibility of the patient to be understood by
the listener.

• F (Fluency): intended as smoothness of speech production.
• Vo (Voicing): the capability to correctly utter voiced or unvoiced speech, that is, the

speech is voiced or unvoiced when it actually needs to be voiced or unvoiced [20].
• S (Spasmodicity): this parameter is related to the perception of voice breaks, tremor,

and strain.

2.2. Acoustical Analysis

The Italian word /a’jwOe/ was manually segmented from the standardized sentence
and analyzed with the BioVoice open-source software tool [22,23], already successfully
applied to the acoustical analysis of voices from newborns to children and adults, such
as shape classification of newborn cry melody [24], dysprosody detection in Parkinson’s
disease [25], and genetic syndrome speech phenotype characterization [26]. The word
/a’jwOe/ is widely used as it is mainly composed of vowels and is also suited for studying
articulation capabilities. BioVoice automatically resamples audio files at 44.1 kHz, saves
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them in .wav format, and sets proper frequency ranges for male/female/child/newborn
voices to obtain reliable acoustical parameters, both in the time and in the frequency
domain. Specifically: frame duration, number, and percentage of voiced/unvoiced parts,
F0, formants F1–F3, jitter, and noise (Normalized Noise Energy, NNE), along with their
standard deviation, are estimated. BioVoice also computes the Power Spectral Density
(PSD), normalized to its maximum value. In this work, the PSD frequency spectrum in the
adult’s range up to 5500 Hz was divided into 500 Hz wide slides where the average power
was calculated [27]. A total of 48 acoustical parameters were estimated, summarized in
Table 1, along with a short description. Other parameters are specific for newborn/infant
cry and for the singing voice. As they were not used in the present work, they are not
listed here.

Table 1. Acoustical analysis of /a’jwOe/: BioVoice parameters.

Parameter Description

• F0 mean [Hz]
• F0 median [Hz]
• F0 std [Hz]
• F0 min [Hz]
• T0(F0 min) [s]
• F0 max [Hz]
• T0(F0 max) [Hz]
• Jitter (local) [%]
• NNE
• F*mean [Hz]
• F*median [Hz]
• F*std [Hz]
• F*min [Hz]
• F*max [Hz]
• Signal duration [s]
• % voiced
• Voiced duration [s]
• Number of units
• Duration mean [s]
• Duration std [s]
• Duration min [s]
• Duration max [s]
• Number pauses
• Pause duration mean [s]
• Pause duration std [s]
• Pause duration min [s]
• Pause duration max [s]
• PSD I [dB]
• PSD II [dB]
• PSD III [dB]
• PSD IV [dB]
• PSD V [dB]
• PSD VI [dB]
• PSD VII [dB]
• PSD VIII [dB]
• PSD IX [dB]
• PSD X [dB]
• PSD XI [dB]

• Mean of fundamental frequency
• Median of fundamental frequency
• Standard deviation of fundamental frequency
• Minimum of fundamental frequency
• Time instance at which the minimum of F0 occurs
• Maximum of fundamental frequency
• Time instance at which the maximum of F0 occurs
• Frequency variations of glottis cycle-to-cycle periods [28]
• Normalized noise energy [29]
• Mean of * formant
• Median of * formant
• Standard deviation of * formant
• Minimum of * formant
• Maximum of * formant
• Total audio file duration
• Percentage of voiced parts inside the whole signal
• Total duration of voiced parts
• Number of voiced parts
• Mean duration of voiced parts
• Standard deviation of voiced parts
• Minimum duration of voiced parts
• Maximum duration of voiced parts
• Total number of pauses in the audio file
• Mean duration of pauses
• Standard deviation of pause duration
• Minimum of pause duration
• Maximum of pause duration
• Mean PSD in the frequency range 0–500 Hz
• Mean PSD in the frequency range 500–1000 Hz
• Mean PSD in the frequency range 1000–1500 Hz
• Mean PSD in the frequency range 1500–2000 Hz
• Mean PSD in the frequency range 2000–2500 Hz
• Mean PSD in the frequency range 2500–3000 Hz
• Mean PSD in the frequency range 3000–3500 Hz
• Mean PSD in the frequency range 3500–4000 Hz
• Mean PSD in the frequency range 4000–4500 Hz
• Mean PSD in the frequency range 4500–5000 Hz
• Mean PSD in the frequency range 5000–5500 Hz

* stands for 1, 2, and 3. These parameters were computed for the first, second, and third formant (respectively, F1,
F2, and F3).

2.3. Machine Learning and Statistical Analysis

Automatic assessment of voice pathologies based on artificial intelligence techniques
represents an established approach to analyze high-dimensional data. Most of the used
models include k-nearest neighbors (KNN), support vector machine (SVM), and random
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forest (RF), and they were implemented in this work. Some advantages of machine learning
(ML) methods are that very few assumptions are required about the data-generating
systems, which are instead relevant to obtain reliable statistical results but are not often
available in clinical practice. Moreover, they are capable of generalizing underlying data
patterns for prediction with completely new observations [30–32]. Furthermore, many
studies [11,33] have highlighted that even when data do not show statistically significant
differences, ML can still effectively identify parameters to differentiate observations. As
the present study is focused on prediction rather than inferencing, statistical analysis
was implemented only to support ML results. The items listed in Table 1 were used
as features for a set of multiclass and multivariate classification experiments. Features
were z-score normalized to allow comparisons between variables with different scales and
units of measurement. They made up the whole training set. Hyperparameter tuning
was performed with Bayesian optimization using MATLAB® 2020b [34]. The function
bayesopt.m allows for the selection of several properties, such as the number of iterations
for the evaluation of the objective function (set at 60 iterations, according to [35]); the
optimization metric, which corresponds to the global accuracy; and model hyperparameters
that minimize the overall misclassification error. In our study,

• For the KNN classifier: the number of neighbors k was evaluated between 2 and
27. The considered distance metrics were “cityblock”, “Chebyshev”, “correlation”,
“cosine”, “Euclidean”, “hamming”, “jaccard”, “mahalanobis”, “minkowski”, “seu-
clidean”, “spearman” (according to [36]). The distance weight was chosen between
“equal”, “inverse”, “squared inverse”.

• For the SVM classifier: coding was selected between “one vs. one” or “one vs. all”.
Box constraint and kernel scale were evaluated between 10−3 and 103. The kernel
function was set as Gaussian.

• For random forest, the fitcensemble.m function was used, and the aggregation method
was set as “Bag”. The minimum number of leaves was selected between 2 and 27. The
maximum number of splits was between 2 and 27. The split criteria were between
“deviance”, “gdi”, and “twoing” (according to [37]). The number of variables to
sample was between 1 and 55.

To reduce overfitting and obtain reliable results, the trained models were cross-
validated with the leave-one-subject-out (LOSO) method. Perceptual indices were used to
separate AdSD severity into three classes: severe, moderate, and mild, as shown in Table 2.

Table 2. Perceptual indices conversion for multiclass classification experiments.

Values of Perceptual Indices Class Class Values

[0–3] Severe 1
[4–6] Moderate 2
[7–10] Mild 3

In the first artificial intelligence (AI) experiment, each rating from the GRB and the
IFVoS scales was iteratively implemented as a response variable to identify relationships
between objective and perceptual variables and find the most relevant features that define
the voice characteristics of AdSD. At each iteration, only one perceptual parameter was
considered, and the other ones were ignored.

In the second AI experiment, index G was used as response variable, while all other
parameters were used to evaluate the classifiers capability in AdSD severity assessment. In
Table 3, the number of patients for each class is shown. Categorical values were not z-score
normalized. A MATLAB® 2020b [34] code was developed to automatically save validation
accuracies, precision, sensitivity, specificity, F-score (i.e., the harmonic mean between preci-
sion and sensitivity), area-under-the-curve values (AUCs), and model hyperparameters.
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Table 3. Patients’ distribution considering the G index as a grouping variable.

Class Number of Patients

Severe 13
Moderate 13

Mild 2

An important issue concerning machine learning techniques, especially when they
are used as diagnostic tools for decision making, is the trust of individual prediction:
although convincing, it can be difficult to directly relate prediction results to existing
physiological knowledge [32]. Evaluation metrics such as accuracy may not be indicative;
therefore, Ribeiro et al. [38] proposed textual and visual artefacts that provide a qualitative
explanation of the relationships between single observation (or instance) features and
model predictions. Thus, Local Interpretable Model-Agnostic Explanations (LIME) were
used to identify which parameters contributed or disagreed with the prediction of an
individual observation made by the trained models. The LIME method simplifies the
relationship between data labels and independent variables and is based on the assumption
that every model behaves like simple linear models at the local scale, i.e., at single-row-level
data. Once a particular instance is selected, or “explained”, LIME operates in three steps:

(1) It samples new data from the instance and calculates distances between sampled data
and the original observation.

(2) It uses the complex model that needs to be explained to make predictions on synthe-
sized data and then it trains the simple model.

(3) The simple model is weighted using the same distance metric of step 1 and therefore
it identifies the features that contributed in order to obtain a specific prediction.

In MATLAB, the function lime.m requires the user to specify the hyperparameters of
the trained complex model, the observation that needs to be explained (named “query
point”), and the number of predictors to train the simple model, and it returns a bar graph
showing the relevance of each predictor and predictor weight. A code was developed to
iteratively compute LIME for all observation for each trained classifier, setting the number
of features to 10. As an example, Figure 1 depicts the outcome of LIME prediction for a row
of the dataset; hence, the query point or observation of the first AI experiment, considering
G as response variable. Blackbox model refers to the trained complex classifier, Simple
Model to the classifier trained by LIME, and 1 to the severity class introduced in Table 2.
On the vertical axis, features that contributed to the correct classification are shown (in this
case: % voiced, F1 mean, duration mean, and F0 mean), while in the horizontal axis, their
individual weights are shown.

With reference to Figure 1, in order to find relevant features, other models and corre-
sponding plots were obtained for each observation, and predictor weights were averaged.
Then, the total weight was computed, and the ratio between individual predictor weight
and total weight was considered in order to identify relevant parameters: an arbitrary
threshold was set at 0.1.

As for statistical analysis, a Shapiro–Wilk test proved that data were normally dis-
tributed in both experiments. Therefore, in order to trace AI experiment settings, a first
ANOVA test was performed, taking perceptual indices as response variables and acoustical
parameters as dependent variables.

A second ANOVA test was carried out, considering G as a response variable and all
other parameters as dependent variables. Significance level was set at 0.05 for both tests.
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3. Results

Table 4 summarizes the best validation accuracies of the first experiment, in which
perceptual indices were iteratively used as response variables to highlight a possible
relationship between them and objective parameters. Table 4 displays models’ hyperpa-
rameters as well: d stands for distance metric, w for distance weight, c for split criterion, v
for number of predictors to select at random for each split, l for number of leaves, s for the
maximum number of splits, and N for the number of learning cycles.

Table 4. Best classification results for the first AI experiment.

Response
Variable

LOSO
Cross—Validation

Accuracy
Model Hyperparameters

G 82% KNN K = 2; d = spearman; w = inverse
R 86% KNN K = 2; d = spearman; w = equal
B 79% KNN K = 7; d = cityblock; w = squaredinverse

Intelligibility 54% KNN K = 17; d = seuclidean; w = squaredinverse
Fluency 68% RF C = twoing; v = 48; l = 2; s = 1; N = 20
Voicing 61% KNN K = 11; d = spearman; w = equal

Spasmodicity 71% KNN K = 3; d = seucliean; w = inverse

LIME trained a simple model for each observation, weighted the simple model with
the classifiers listed in Table 5, and computed which features contributed to the outcome;
therefore, it was possible to find out relationships between response variables and acoustical
correlates, as Table 5 shows.

Table 5. Most relevant features obtained by averaging and normalizing LIME predictors’ weights for
perceptual indices in the first AI experiment.

Response Variable Features

G % voiced, F0 mean
R F2 median, % voiced
B F1 median, PSD III

Intelligibility F0 max, T0(F0 max)
Fluency PSD I
Voicing F0 mean, PSD I

Spasmodicity F1 median, PSD VIII

Figures 2–5 show the percentage of total weight explained by each feature, respectively
for G, R, B, and Spasmodicity.
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In the second experiment, G was used as response variable to assess AdSD severity
with both perceptual and objective parameters. The best model was a KNN with k = 2 and
Euclidean metric distance, which reached 89% LOSO validation accuracy. LIME results are
summarized in Table 6.

Table 6. Most relevant features obtained by averaging and normalizing LIME predictors’ weights for
the G index in the second AI experiment.

Response Variable Features

G Spasmodicity, R, Voicing
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In Table 7, the performance of the KNN model is presented. In brackets, the 95%
confidence bounds for each metric are reported.

Table 7. Confusion matrix: evaluation metrics for the second AI experiment.

Parameter Class 1 (Severe) Class 2 (Moderate) Class 3 (Mild)

Precision 0.92 (0.75–1.00) 0.86 (0.67–1.00) 1.00 (0.00–1.00)
Sensitivity 0.92 (0.73–1.00) 0.92 (0.75–1.00) 0.50 (0.00–1.00)
Specificity 0.93 (0.77–1.00) 0.87 (0.67–1.00) 1.00 (0.00–1.00)

F-score 0.92 (0.78–1.00) 0.89 (0.74–1.00) 0.67 (0.00–1.00)
AUC 0.91 (0.77–1.00) 0.87 (0.71–1.00) 0.69 (0.00–1.00)

In Table 8, results from the first ANOVA test are shown with p-values in brackets. No
significant difference between classes for the B index was observed.
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Table 8. Statistical analysis results of the first AI experiment. The p-values are reported in brackets.

G R Intelligibility

F0 mean (0.012)
F0 median (0.043)

F0 max (0.003)

F0 max (0.014)
F1 mean (0.037)
F2 mean (0.038)

F2 median (0.006)
% voiced (0.045)

F0 mean (0.041)
F0 max (0.008)
F1 std (0.045)

Pause duration min (0.049)

Fluency Voicing Spasmodicity

NNE (0.037)
PSD I (0.010)

F0 mean (0.005)
F0 max (0.001)
F2 min (0.030)

F1 mean (0.018)
F1 median (0.050)

F1 min (0.004)
F2 mean (0.024)

F2 median (0.032)
F2 max (0.043)

% voiced (0.024)
Number of units (0.050)

Number of pauses (0.050)

For the second statistical test, perceptual indices showed significant differences be-
tween severity classes for R (p < 0.001), B (p = 0.029), Intelligibility (p < 0.001), Fluency
(p < 0.001), Voicing (p < 0.001), and Spasmodicity (p < 0.001). Furthermore, G showed
significant differences between classes for F0 mean (p = 0.012), F0 median (p = 0.043), and
F0 max (p = 0.003).

4. Discussion

The identification of relationships between perceptual and objective measures of voice
still represents a topic under discussion. In Dejonckere et al. [39], correlations were found
between G, shimmer, and HNR; R and jitter; and B and shimmer. In another paper, the
same authors showed that G was also highly correlated (0.71) with the dominant cepstral
peak [40]. Bhuta et al. [17] found relationships between the voice turbulence index (VTI)
and G, NHR with G and R, and soft phonation index (SPI) with G and B. These results were
confirmed in more recent papers of Park et al. [41] and Narisimhan et al. [42]. Focusing
on SD, Dejonckere et al. [43] found relationships only between B and devoicing measures
extracted with AMPEX: PVF (i.e., the proportion of voiced frames), PVS (i.e., the proportion
of speech frames), and VL90 (which represents the 90th percentile of the voicing length
distribution). However, this study had different aims from the present one, as it concerned
the comparison between pre- and post-treatment voice quality.

In the present study, the LIME method was implemented to investigate relation-
ships between perceptual indices and objective parameters for AdSD, which represent an
unexplored task. Specifically,

• The percentage of voiced parts in the whole audio signal (% voiced) was the parameter
most strongly related to G value. This may be linked to repeated interruptions that
significantly lower voice quality. This result is supported also by the two parameters:
duration mean and duration max, which highlight the longer time required to emit
the word /a’jwOle/ due to alterations in vocal fold mobility. F0 mean and F1 mean
contributed as well. The relevance of F1 mean could be associated with pharynx
constriction degree [44].

• R assessment is linked to F2 median and % voiced. These results suggest that rough-
ness is related to tongue movements [44]. Jitter was found to be relevant in 8 out
28 predictions with LIME, but its total contribution weight was equal to 3.1%. In-
terestingly, jitter represented a “confounding” parameter causing moderate cases of
AdSD to be classified as severe. In 25% of observations, NNE, a measure of noise
alternative to HNR, was considered relevant, but its total contribution weight was
equal to 2.4% only. However, it is important to specify that these discrepancies with
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literature results [39,41,42] are probably caused by different tasks: while jitter and
NNE typically show strong correlations with R when healthy subjects are compared
with patients diagnosed with AdSD, probably jitter and NNE do not represent relevant
parameters to assess and distinguish among different AdSD severity classes.

• B ratings and F1 median values showed the strongest relationship. As shown in
Figure 4, even if PSD III (range [1–1.5] kHz) is considered a relevant parameter, it
caused two out of four misclassifications from moderate to mild, and therefore it
should be discarded.

• Spasmodicity is associated with F1 median as well as the medium–high frequency
region of the spectrum, described by PSD VIII (range of 3.5–4 kHz).

For Intelligibility, Fluency, and Voicing, the low validation accuracies of trained clas-
sifiers made the relevant parameters identified by LIME unreliable. However, statistical
analysis highlighted significant differences between classes for Intelligibility in Pause dura-
tion min (0.049), which can be related to high correlation between Intelligibility and PVF
in [21], and F0 mean (0.041). Fluency presented significant differences in NNE (p = 0.037)
and PSD I (p = 0.01), with this last parameter confirmed by LIME as well, and Voicing with
F2 min (p = 0.03) and F0 mean (p = 0.005), in agreement with Table 5.

It is interesting to notice that the LIME outcome is supported by statistical analysis,
especially for R: indeed, F2 median, % voiced, and F1 mean show significant differences
between classes, in particular between severe and moderate class with p = 0.005, p = 0.040,
and p = 0.040, respectively. This is partly true also for G and Spasmodicity, where F0
mean and F1 median each showed significant differences. For Spasmodicity, the ANOVA
highlighted that, besides F1- and F2-related measures, % voiced, Number of Units, and
Number of pauses provided significant differences between severity classes: since spas-
modicity directly depends on voice breakings, such results reflect strong connection with
objective correlates.

Both acoustical and perceptual parameters were included as features in a multiclass
classification experiment that aims at developing a model capable of supporting otolaryn-
gologists in AdSD assessment. To the authors’ knowledge, this represents the first attempt
to assess the severity of such pathology with machine learning techniques. Indeed, the
literature mainly concerns general voice disorder, or just SD assessment, or only the dis-
crimination between SD and MDT.

With a KNN model, a high accuracy of 89% was obtained: this is a promising result
that highlights how MLVA could be successfully applied as a support for ENT specialists
in AdSD assessment. Table 7 shows high precision, F-score, and AUC values, especially
for the severity class 1, which means that, with this classifier, acoustical parameters and
perceptual indices are able to distinguish the most severe cases of AdSD. Our model also
shows strong recognition capabilities for moderate cases of AdSD, while mild severity
cases are characterized by lower performance. In fact, our sample comprised only two mild
cases. Hence, mild cases of SD were underrepresented in our study, and further analyses
will be required in the future; this is possibly a consequence of our severe inclusion
criterion, i.e., only cases with compelling clinical diagnosis of SD. However, precision
and specificity are equal to 100%, underlying that no severe or moderate cases were
misclassified as mild cases: this is an important result, useful to avoid underestimation.
LIME was also used to identify relevant features in prediction: Table 6 shows that they were
all perceptual parameters, particularly Spasmodicity, R, and Voicing. Moreover, ANOVA
detected significant differences between all perceptual parameters (especially R, Voicing,
and Spasmodicity, with p-values < 0.001) and F0-related measures, which can be associated
with PSD I. These results confirm the validity of the IINFVo scale for SD assessment [21].

For each perceptual index, the proposed method was capable of detecting the best
corresponding acoustical feature: % voiced for G, F2 median for R, and F1 median for
B and Spasmodicity. These parameters could be associated with voice breakings caused
by spasms, tongue movement limitations, and pharynx constriction, respectively, which
may also depend on anomalous laryngeal muscle contraction of AdSD. Due to the low
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validation accuracy of the trained models, possible relationships between IINFVo and
acoustical parameters were not considered, and further analysis is required to improve
classification performances. However, the combination of machine learning techniques,
which can highlight underlying patterns in data, and LIME, allowed for the identification
of useful relationships between perceptual and acoustical parameters in SD assessment, a
task where statistical analysis methods showed poor performances. Finally, a KNN model
provided 89% overall accuracy in dividing patients affected by AdSD into three severity
classes—this promising result could help ENT specialists to recognize subjects that would
benefit from botulinum toxin A treatment and reduce pathology gravity underestimation.

5. Conclusions

AdSD is characterized by strained voice, pitch breaks, and intermittent breathiness
that are usually assessed with perceptual ratings. Acoustical analysis and machine learning
techniques can support the clinicians’ diagnosis providing reliable relationships between
objective and perceptual indices. In this paper, an innovative approach is proposed to
address this problem on the basis of the LIME method, which highlighted the most relevant
objective parameters that should be taken into account to support and validate G, R, B,
and Spasmodicity assessment. This could be helpful to quantify possible improvements or
worsening of voice quality after specific treatments. Results were supported by statistical
analysis as well. Moreover, a novel machine learning experiment was carried out to develop
an automatic tool that could help otolaryngologists in AdSD severity assessment and also
to monitor SD voice quality over time after botulinum toxin injection, as an aid to check
whether and to what extent it was successful and if and when it may be appropriate to
repeat the treatment. However, adjustments of the method and a larger dataset, including
male patients as well, for validation are required to reduce the number of severe cases
classified as moderate.

Author Contributions: F.C.: Conceptualization, Methodology, Software, Formal Analysis, Investigation,
Data Curation, Writing—Original Draft, Visualization. L.F.: Software, Methodology, Writing—Review
and Editing. C.M.: Conceptualization, Methodology, Writing—Review and Editing, Supervision,
Project Administration. P.D.: Methodology, Writing—Review and Editing. F.M.: Data Curation. S.B.:
Writing—Review and Editing, Project Administration. L.P.: Writing—Review and Editing, Project
Administration. G.C.: Conceptualization, Methodology, Writing—Review and Editing, Supervision,
Project Administration, Funding Acquisition. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially funded under the project 2018.0976 Fondazione Cassa di Risparmio
di Firenze, Firenze, Italy, and by Italian Ministry of Health–Current research IRCCS.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patients to publish this paper.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jinnah, H.A.; Berardelli, A.; Comella, C.; Defazio, G.; Delong, M.; Factor, S.; Galpern, W.; Hallett, M.; Ludlow, C.; Perlmutter, J.;

et al. The focal dystonias: Current views and challenges for future research. Mov. Disord. 2013, 28, 926–943. [CrossRef] [PubMed]
2. Hintze, J.M.; Ludlow, C.; Bansberg, S.; Adler, C.; Lott, D.G. Spasmodic Dysphonia: A Review. Part 1: Pathogenic Factors.

Otolaryngol. Head Neck Surg. 2017, 157, 551–557. [CrossRef] [PubMed]
3. Hyodo, M.; Asano, K.; Nagao, A.; Hirose, K.; Nakahira, M.; Yanagida, S.; Nishizawa, N. Botulinum Toxin Therapy: A Series of

Clinical Studies on Patients with Spasmodic Dysphonia in Japan. Toxins 2021, 13, 840. [CrossRef] [PubMed]
4. Prudente, C.N.; Chen, M.; Stipancic, K.; Marks, K.; Samargia-Grivette, S.; Goding, G.; Green, J.; Kimberley, T.J. Effects of

low-frequency repetitive transcranial magnetic stimulation in adductor laryngeal dystonia: A safety, feasibility, and pilot study.
Exp. Brain Res. 2022, 240, 561–574. [CrossRef] [PubMed]

http://doi.org/10.1002/mds.25567
http://www.ncbi.nlm.nih.gov/pubmed/23893450
http://doi.org/10.1177/0194599817728521
http://www.ncbi.nlm.nih.gov/pubmed/28850801
http://doi.org/10.3390/toxins13120840
http://www.ncbi.nlm.nih.gov/pubmed/34941678
http://doi.org/10.1007/s00221-021-06277-4
http://www.ncbi.nlm.nih.gov/pubmed/34859288


Bioengineering 2023, 10, 426 13 of 14

5. Dejonckere, P.H.; Neumann, K.J.; Moerman, M.B.J.; Martens, J.P.; Giordano, A.; Manfredi, C. Tridimensional assessment of
adductor spasmodic dysphonia pre- and post-treatment with Botulinum toxin. Eur. Arch. Oto-Rhino-Laryngol. 2011, 269,
1195–1203. [CrossRef]

6. Cantarella, G.; Berlusconi, A.; Maraschi, B.; Ghio, A.; Barbieri, S. Botulinum toxin injection and airflow stability in spasmodic
dysphonia. Otolaryngol. Head Neck Surg. 2006, 134, 419–423. [CrossRef]

7. Suppa, A.; Asci, F.; Saggio, G.; Marsili, L.; Casali, D.; Zarezadeh, Z.; Ruoppolo, G.; Berardelli, A.; Costantini, G. Voice analysis
in adductor spasmodic dysphonia: Objective diagnosis and response to botulinum toxin. Park. Relat. Disord. 2020, 73, 23–30.
[CrossRef]

8. Roy, N.; Ma, A.M.; Awan, S.N. Automated acoustic analysis of task dependency in adductor spasmodic dysphonia versus muscle
tension dysphonia. Laryngoscope 2013, 124, 718–724. [CrossRef]

9. Hintze, J.M.; Ludlow, C.L.; Bansberg, S.F.; Adler, C.H.; Lott, D.G. Spasmodic Dysphonia: A Review. Part 2: Characterization of
Pathophysiology. Otolaryngol. Neck Surg. 2017, 157, 558–564. [CrossRef]

10. Schlotthauer, G.; Torres, M.E.; Jackson-Menaldi, M.C. A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle
Tension Dysphonia Automatic Classification. J. Voice 2010, 24, 346–353. [CrossRef]

11. Costantini, G.; Di Leo, P.; Asci, F.; Zarezadeh, Z.; Marsili, L.; Errico, V.; Suppa, A.; Saggio, G. Machine Learning based Voice
Analysis in Spasmodic Dysphonia: An Investigation of Most Relevant Features from Specific Vocal Tasks. In Proceedings of the
14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021), Austria, Vienna, 11–13
February 2021; Volume 4, pp. 103–113.

12. Powell, M.E.; Cancio, M.R.; Young, D.; Nock, W.; Abdelmessih, B.; Zeller, A.; Morales, I.P.; Zhang, P.; Garrett, C.G.; Schmidt, D.;
et al. Decoding phonation with artificial intelligence (D e P AI): Proof of concept. Laryngoscope Investig. Otolaryngol. 2019, 4,
328–334. [CrossRef] [PubMed]

13. Hu, H.-C.; Chang, S.-Y.; Wang, C.-H.; Li, K.-J.; Cho, H.-Y.; Chen, Y.-T.; Lu, C.-J.; Tsai, T.-P.; Lee, O.K.-S. Deep Learning Application
for Vocal Fold Disease Prediction Through Voice Recognition: Preliminary Development Study. J. Med. Internet Res. 2021, 23,
e25247. [CrossRef] [PubMed]

14. Fang, S.-H.; Tsao, Y.; Hsiao, M.-J.; Chen, J.-Y.; Lai, Y.-H.; Lin, F.-C.; Wang, C.-T. Detection of Pathological Voice Using Cepstrum
Vectors: A Deep Learning Approach. J. Voice 2018, 33, 634–641. [CrossRef]

15. Berardelli, A.; Abbruzzese, G.; Bertolasi, L.; Cantarella, G.; Carella, F.; Currà, A.; De Grandis, D.; DeFazio, G.; Galardi, G.;
Girlanda, P.; et al. Guidelines for the therapeutic use of bot-ulinum toxin in movement disorders. Ital. J. Neurol. Sci. 1997, 18,
261–269. [CrossRef] [PubMed]

16. Hirano, M. Clinical Examination of Voice, in Disorders of Human Communication; Springer: Wien, Germany, 1981; pp. 1–99.
17. Bhuta, T.; Patrick, L.; Garnett, J.D. Perceptual evaluation of voice quality and its correlation with acoustic measurements. J. Voice

2004, 18, 299–304. [CrossRef] [PubMed]
18. Ricci-Maccarini, A.; Limarzi, M.; Pieri, F.; Stacchini, M.; Lucchini, E.; Magnami, M. Refertazione e interpretazione dei tracciati e

dei questionari nello studio della disfonia. In Refertazione e Interpretazione dei Tracciati e dei Questionari in ORL; TorGraf: Lecce,
Italy, 2002; pp. 285–320.

19. Dejonckere, P.H.; Bradley, P.; Celemente, P.; Cornut, G.; Crevier-Buchman, L.; Friedrich, G.; Van de Heyning, P.; Remacle, M.;
Woisard, V. A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phono-
surgical) treatments and evaluating new assessment techniques. Eur. Arch. Otorhinolaryngol. 2001, 258, 77–82. [CrossRef]
[PubMed]

20. Moerman, M.B.J.; Martens, J.; Van der Borgt, M.; Peleman, M.; Gillis, M.; Dejockere, P.H. Perceptual evaluation of sub-stitution
voices: Development and evaluation of the (I)INFVo rating scale. Eur. Arch. Otorhinolaryngol. 2006, 263, 183–187. [CrossRef]

21. Siemons-Lühring, D.I.; Moerman, M.; Martens, J.-P.; Deuster, D.; Müller, F.; Dejonckere, P. Spasmodic dysphonia, perceptual and
acoustic analysis: Presenting new diagnostic tools. Eur. Arch. Oto-Rhino-Laryngol. 2009, 266, 1915–1922. [CrossRef]

22. Morelli, M.S.; Orlandi, S.; Manfredi, C. BioVoice: A multipurpose tool for voice analysis. Biomed. Signal Process. Control. 2020, 64,
102302. [CrossRef]

23. Manfredi, C.; Bocchi, L.; Cantarella, G. A multipurpose user-friendly tool for voice analysis: Application to pathological adult
voices. Biomed. Signal Process. Control 2009, 4, 212–220. [CrossRef]

24. Manfredi, C.; Bandini, A.; Melino, D.; Viellevoye, R.; Kalenga, M.; Orlandi, S. Automated detection and classification of basic
shapes of newborn cry melody. Biomed. Signal Process. Control 2018, 45, 174–181. [CrossRef]

25. Bandini, A.; Giovannelli, F.; Orlandi, S.; Barbagallo, S.; Cincotta, M.; Vanni, P.; Manfredi, C. Automatic identification of dys-
prosody in idiopathic Parkinson’s disease. Biomed. Signal Process. Control 2015, 17, 47–54. [CrossRef]

26. Frassineti, L.; Calà, F.; Sforza, E.; Onesimo, R.; Leoni, C.; Lanatà, A.; Zampino, G.; Manfredi, C. Quantitative acoustical analysis of
genetic syndromes in the number listing task. Biomed. Signal Process. Control 2023, accepted.

27. Manfredi, C.; Altamore, V.; Bandini, A.; Orlandi, S.; Battilocchi, L.; Cantarella, G. Effect of Protective Masks on Voice Parameters:
Acoustical Analysis of Sustained Vowels. Proc. Model. Anal. Vocal Emiss. Biomed. Appl. 2021, 8, 171–174.

28. Teixeira, J.P.; Oliveira, C.; Lopes, C. Vocal acoustic analysis-jitter, shimmer and hnr parameters. Procedia Technol. 2013, 9, 1112–1122.
[CrossRef]

29. Kasuya, H.; Ogawa, S.; Mashima, K.; Ebihara, S. Normalized noise energy as an acoustic measure to evaluate pathologic voice. J.
Acoust. Soc. Am. 1986, 80, 1329–1334. [CrossRef] [PubMed]

http://doi.org/10.1007/s00405-011-1890-6
http://doi.org/10.1016/j.otohns.2005.10.028
http://doi.org/10.1016/j.parkreldis.2020.03.012
http://doi.org/10.1002/lary.24362
http://doi.org/10.1177/0194599817728465
http://doi.org/10.1016/j.jvoice.2008.10.007
http://doi.org/10.1002/lio2.259
http://www.ncbi.nlm.nih.gov/pubmed/31236467
http://doi.org/10.2196/25247
http://www.ncbi.nlm.nih.gov/pubmed/34100770
http://doi.org/10.1016/j.jvoice.2018.02.003
http://doi.org/10.1007/BF02083302
http://www.ncbi.nlm.nih.gov/pubmed/9412849
http://doi.org/10.1016/j.jvoice.2003.12.004
http://www.ncbi.nlm.nih.gov/pubmed/15331102
http://doi.org/10.1007/s004050000299
http://www.ncbi.nlm.nih.gov/pubmed/11307610
http://doi.org/10.1007/s00405-005-0960-z
http://doi.org/10.1007/s00405-009-0995-7
http://doi.org/10.1016/j.bspc.2020.102302
http://doi.org/10.1016/j.bspc.2008.11.006
http://doi.org/10.1016/j.bspc.2018.05.033
http://doi.org/10.1016/j.bspc.2014.07.006
http://doi.org/10.1016/j.protcy.2013.12.124
http://doi.org/10.1121/1.394384
http://www.ncbi.nlm.nih.gov/pubmed/3782609


Bioengineering 2023, 10, 426 14 of 14

30. Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine
Learning in Medicine: Diagnosis, Drug Devolopment, and Treatment. Medicina 2020, 56, 455. [CrossRef]

31. Healy, B.C. Machine and deep learning in MS research are just powerful statistics—No. Mult. Scler. J. 2021, 27, 663–664. [CrossRef]
32. Ij, H. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234.
33. Bur, A.M.; Shew, M.; New, J. Artificial Intelligence for the Otolaryngologist: A State of the Art Review. Otolaryngol. Neck Surg.

2019, 160, 603–611. [CrossRef]
34. MATLAB and Statistics Toolbox Release 2020b; The MathWorks, Inc.: Natick, MA, USA, 2020.
35. Harar, P.; Galaz, Z.; Alonso-Hernandez, J.B.; Mekyska, J.; Burget, R.; Smekal, Z. Towards robust voice pathology detection. Neural

Comput. Appl. 2018, 32, 15747–15757. [CrossRef]
36. MATLAB. Fitcknn. Available online: https://www.mathworks.com/help/stats/fitcknn.html (accessed on 20 November 2022).
37. MATLAB. Fitcensemble. Available online: https://www.mathworks.com/help/stats/fitcensemble.html (accessed on 20 November 2022).
38. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the Prediction of Any Classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

39. Dejonckere, P.H.; Lebacq, J. Acoustic, perceptual, aerodynamic and anatomical correlations in voice pathology. ORL J Otorhino-
laryngol. Relat. Spec. 1996, 58, 326–332. [CrossRef] [PubMed]

40. Dejonckere, P.H.; Remacle, M.; Fresnel-Elbaz, E.; Woisard, V.; Crevier-Buchman, L.; Millet, B. Differentiated perceptual evaluation
of pathological voice quality: Reliability and correlations with acoustic measurements. Rev. Laryngol.-Otol.-Rhinol. 1996, 117,
219–224.

41. Park, J.W.; Kim, B.; Oh, J.H.; Kang, T.K.; Kim, D.Y.; Woo, J.H. Study for Correlation between Objective and Subjective Voice
Parameters in Patients with Dysphonia. J. Korean Soc. Laryngol. Phoniatr. Logop. 2019, 30, 118–123. [CrossRef]

42. Narasimhan, S.; Rashmi, R. Multiparameter Voice Assessment in Dysphonics: Correlation Between Objective and Perceptual
Parameters. J. Voice 2020, 36, 335–343. [CrossRef]

43. Dejonckere, P.H.; Neumann, K.; Moerman, M.; Martens, J.P. Perceptual and acoustic assessment of adductor spasmodic dysphonia
pre- and posttreatment with botulinum toxin. In Proceedings of the 3rd Advanced Voice Function Asssessment Inter-national
Workshop, Madrid, Spain, 18–20 May 2009; pp. 169–172.

44. Deller, J.R.; Hansen, J.H.L.; Proakis, J.G. Discrete-Time Processing of Speech Signals; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/medicina56090455
http://doi.org/10.1177/1352458520978648
http://doi.org/10.1177/0194599819827507
http://doi.org/10.1007/s00521-018-3464-7
https://www.mathworks.com/help/stats/fitcknn.html
https://www.mathworks.com/help/stats/fitcensemble.html
http://doi.org/10.1159/000276864
http://www.ncbi.nlm.nih.gov/pubmed/8958542
http://doi.org/10.22469/jkslp.2019.30.2.118
http://doi.org/10.1016/j.jvoice.2020.06.009

	Introduction 
	Material and Methods 
	Perceptual Parameters 
	Acoustical Analysis 
	Machine Learning and Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

