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Abstract: Inflammatory status is one of the main drivers in the development of non-communicable
diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed
foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota
and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term
dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of
disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-
inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial
diseases but also on the dietetic approaches used as treatment for specific diseases. Considering
multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed
for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future
research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role
of inflammation is emerging. For diseases requiring special diets, the role of single or multiple
foods, possibly associated with inflammation, was assessed, but more studies are needed. The
evidence collected highlighted the need for health professionals to consider the entire dietary pattern,
providing balanced and healthy diets not only to permit the metabolic control of the disease itself,
but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional
approaches, in close collaboration between the hospital, country, and families, must always be
promoted together with the development of new methods for the assessment of pro-inflammatory
dietary habits in pediatric age and the implementation of telemedicine.

Keywords: inflammation; dietary inflammatory potential; ultra-processed food; Western diet;
non-communicable diseases; metabolic diseases; gut dysbiosis

1. Introduction

Inflammation is well known to be a crucial component of the pathophysiology of
several chronic diseases [1]. The growing awareness that dietary habits play an essential
role in the development of a chronic inflammatory status has led to a particular focus of the
research in the field of pro-inflammatory diets, in order to limit long-term complications [2].
Different nutritional compounds, including micro- and macronutrients, bioactive molecules,
and specific dietary patterns, can influence the inflammation process [3]. Anti-inflammatory
dietary patterns in the adult population usually imply a significant consumption of vegeta-
bles, fruits, whole grains, a moderate intake of legumes and fish, and a low consumption of
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red meat. They are usually rich in polyunsaturated fatty acids (PUFAs), particularly marine
n-3 PUFAs, vitamin C, vitamin E, carotenoids, and polyphenols [4–6]. The mediterranean
diet (MD) is an example of an anti-inflammatory dietary pattern [7]. The current evidence
highlights that the MD is associated with lower levels of inflammatory biomarkers, particu-
larly C reactive protein (CRP) and interleukin-6 (IL-6) [8,9]. In contrast, the Western diet
(WD), consisting of a high caloric intake and a frequent consumption of sugars, refined cere-
als, red and processed meats, has been linked with an increased pro-inflammatory potential
and higher levels of CRP and IL-6 [10]. The WD includes oxidized lipids, saturated fatty
acids (SFAs), trans fatty acids, food additives, and ultra-processed foods (UPFs) [3]. Over
the last few decades, the incidence of intestinal and systemic inflammatory disorders has
increased, particularly among children and adolescents. This result might also be driven
by the increasing popularity of the WD [11].

UPFs, according to the NOVA food classification system (Figure 1), are readily avail-
able meals that are often used as a practical substitute for traditional ones [12–14]. They are
characterized by higher concentrations of sugars, SFAs, and sodium [15]. Moreover, these
processed foods are energy dense, highly palatable, and impact the glycemic load. They
are also lower in protein, dietary fiber, micronutrients, and phytochemicals, compared to
their counterparts [16].
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Apart from an altered nutritional profile [16–25], UPFs can also be rich in additives
and emulsifiers (e.g., carrageenan) implicated in the inflammatory cascade [26,27] or food
packaging contaminants, such as bisphenol and phthalates, known for their potential role
as endocrine disruptors [28,29]. In addition, it has been hypothesized that these substances
may negatively modulate gut microbiota composition [30,31].

The association between UPFs’ consumption and the pathogenesis of inflammatory
diseases has been established in adults, and some evidence suggests their pro-inflammatory
effect in children, who are usually the most frequent UPFs consumers, especially during
school age [32–34]. At present, the striking question is about understanding to what extent
the adoption of a pro-inflammatory dietary pattern could influence the onset of NCDs,
such as obesity, metabolic syndrome, diabetes, and inflammatory bowel disease (IBD) in
pediatric age and onwards, but also allergies, cancer, and celiac disease.



Nutrients 2023, 15, 5095 3 of 30

At the same time, it is interesting to point out that some pathological conditions,
including celiac disease and inherited metabolic diseases (IEMs), require lifelong special
diets, excluding some determined nutrients or compounds or exceeding the consumption
of others, which may alter the gut microbiota composition, promoting the overgrowth
of bacteria-linked intestinal inflammation [35], and also cause a depletion of short-chain
fatty acids (SCFAs)-producing bacteria. SCFAs, mainly represented by acetate, propionate,
and butyrate [36], are products of microbial fermentation in the large bowel from food
components that are unabsorbed/undigested in the small intestine. These compounds
have been demonstrated to play anti-inflammatory roles, contributing to the maintenance
of the gut barrier’s function and to the promotion of gut homeostasis [37,38].

In this narrative review we aim to examine the latest evidence on the pro-inflammatory
potential of dietary patterns in children and adolescents affected by multifactorial diseases
(diet-related, immuno-mediated, allergies and malignancies) but also on the dietetic ap-
proaches used as treatments for specific diseases (celiac disease or IEMs).

2. Materials and Methods

The authors have independently searched, via the PubMed (Medline) and Scopus
databases, for the most relevant articles published from 2008 to June 2023. The research
strategies used are reported in Appendix A. The total number of documents collected in
the different databases was n = 2989. The flow selection data are illustrated in Figure 2.
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Documents were excluded at different steps: when listed twice (n = 1163), or when
their titles and abstract were not relevant (n = 714). Although numerous studies collected
(n = 1112) had a connection between inflammation and pediatric diseases, the authors
chose to focus the review only on papers regarding the impact of dietary patterns, special
diets, specific foods, or nutrients, on the onset or progression of the disease. The most
relevant studies, including original papers, meta-analyses, clinical trials, and observational
studies, were selected. Letters were excluded. Articles on the adult population were added
and used to expand the discussion. A final number of 199 articles were selected, of which
29 were on pediatric age groups. Preclinical studies were considered only to complement
descriptions of the pro-inflammatory diets’ mechanisms of action, thereby unifying the
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molecular basis with the randomized controlled trials’ (RCTs) evidence. Of the IEMs, only
Phenylketonuria (PKU) and glycogen storage diseases (GSDs) were included, as enough
publications ware available.

3. Results

The pediatric diseases presented were categorized in two main groups: multifactorial
diseases, in which dietary patterns and nutrition might be involved in the pathogenetic
mechanisms; and diseases that require a special diet as the main treatment. For the purpose
of the present manuscript, IBD and multiple sclerosis (MS) have been classified as being in
the first group, although they also share features with the second group.

3.1. Dietary Inflammatory Potential as a Trigger in Multifactorial Diseases
3.1.1. Diet-Related Diseases
Obesity and Metabolic Syndrome

Obesity is an increasing global health problem, both in children and adults, associated
with several comorbidities, including metabolic syndrome (MetS).

MetS is a cluster of metabolic abnormalities that includes central obesity, dyslipidemias
(low HDL cholesterol and high triglyceride levels), hypertension, and insulin resistance.
It is characterized by a chronic low-grade inflammation status and oxidative stress, and
it is associated with a significant risk of developing type 2 diabetes and cardiovascular
diseases [39]. Moreover, MetS can also show liver involvement that has been recently
regarded as metabolic dysfunction-associated fatty liver disease (MAFLD) [40].

Diet is considered one of the major contributors to obesity. Recent studies have shown
that the WD pattern, rich in SFAs and trans fats but low in omega-3 PUFAs, contributes to
both insulin resistance and the increased secretion of inflammatory markers [41,42]. Addi-
tionally, children and adolescents adopting a “sweet dietary pattern”, rich in cakes, pastries,
sweets, and soft drinks, are at higher risk for abdominal obesity, elevated blood pressure,
and MetS [43], and sweets’ consumption is associated with unfavorable cardiometabolic
health outcomes, including higher levels of triacylglycerol, Very-Low-Density Lipoprotein
(VLDL) cholesterol, and higher levels on the insulin resistance index (HOMA-IR) [44,45].
In line with this, the high consumption of sugary drinks was estimated to increase, up to
5 times, the risk of developing MetS in the adolescent population [46].

The MD is actually considered a protective dietary pattern against obesity and MetS [47].
Velázquez-López et al. [48] demonstrated that a higher adherence to the MD is associated
with a decrease in the prevalence of MetS (from 16% to 5%) and especially with a decrease
in the glucose blood levels and BMI of children and adolescents with obesity. Vegetables
are known to be enriched in antioxidants such as flavonoids, carotenoids, tocopherols, and
ascorbic acids, well-known players in lowering chronic inflammation. Instead, the WD
replaces the intake of fresh or minimally processed foods, such as legumes, whole grains,
vegetables, fruits, and oilseeds, all foods that are linked to a positive prevention against
MetS and type 2 diabetes, with UPFs. Some studies, qualitatively evaluating the diet in
both pediatric and adult age, have quantified UPFs’ intake and their concurrent association
with obesity and MetS (see Table 1) [49–51]. Other components of UPFs, namely packing
contact materials, such as bisphenol A and phthalates, may explain this association, since
they are implicated in endocrine alterations and insulin resistance [52]. Recently, the effect
of unbalanced diets on the gut microbiota has emerged; specifically, high intakes of fats
and refined carbohydrates can lead to the selection of pro-inflammatory bacteria [53]. In
a clinical study, Ramne et al. [54] illustrated that the consumption of added sugars and
sugary drinks promotes an increased Firmicutes/Bacteroidetes ratio, while simultaneously
displaying a negative correlation with the concentration of the Lacnhnobacterium genus,
known for its beneficial role as a butyrate producer.

The WD is also characterized by a deficient intake of micronutrients, usually found
in children with obesity [55]. Some studies have shown an inadequate zinc intake and
its consequent deficiency in children with overweight or obesity [56,57]. Furthermore,
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Ortega et al. [58] and Garcia et al. [59] reported that lower zinc levels in the pediatric
population were associated with increased insulin resistance. At the same time, zinc
demonstrated potential anti-inflammatory effects through cytokine signaling pathways
and the reduction of plasma levels of IL-6, TNF-α, and CRP [55,60], with a protective effect
against chronic low-grade inflammation, which is found in obesity and MetS.

Nutrients could influence the inflammatory pathways with a positive or negative effect,
interacting with extracellular receptors and mediating intracellular signaling [55,61–63].
The MD, rich in nutrients and phytochemicals known for their anti-inflammatory role,
including vitamins C and E, epigallocatechin gallate, lycopene, and polyphenols, could
modulate inflammatory components such as NF-KB, mitogen-activated protein kinases,
and IL-1β signaling [55]. Lastly, the high fiber content of the MD could have an anti-
inflammatory role due to the major production of SCFAs by gut bacteria, which could
improve glucose and lipid metabolism in many tissues [64,65]. The changes in the gut
microbiota are strictly related to the type of fatty acids ingested: the altered n-6/n-3 PUFAs
ratio was found to promote the development of Enterobacteriaceae and Clostridia spp.,
leading to a pro-inflammatory environment that could be attenuated by the introduction
of n-3 PUFAs [66,67]. The major findings from observational and interventional studies
concerning pediatric obesity are reported in Table 1.

Table 1. Summary of findings from observational and interventional studies concerning pediatric
obesity.

Exposure: Dietary Patterns/
Nutritional Compounds

Authors (Year of Publication),
Study Design Population Exposition/Outcome/Results References

Healthy dietary pattern
Sweet dietary pattern

Western dietary pattern

Kelishadi, R. et al. (2018),
matched case–control

study design
3755 students (aged 7–18 years)

Sweet dietary pattern
enhanced the risk of MetS,

hypertension, and abdominal obesity.
[43]

Dietary habits assessed via a
semi-quantitative FFQ

for adolescents

Tavares, L.F. et al. (2012),
cross-sectional study design 210 adolescents

High consumption of UPFs was
associated with a higher prevalence of
MetS (>1245 g/day of UPFs intake was

associated with a 150% higher
prevalence of MetS).

[50]

Zinc nutritional status
(plasma, erythrocyte, and

24 h urine),
Dietary habits assessed by 3 d

food records

Cozzolino, S.M.F. et al. (2002),
case–control study design

23 obese children and 21 controls
(aged 7–14 years)

Zinc concentrations in plasma and
erythrocytes were significantly lower

in the obese group
(diets consumed by both

groups had marginal concentrations
of zinc).

[57]

Dietary habits assessed by 3 d
food records with special

attention to zinc

Ortega, R.M. et al. (2012),
cross-sectional study

357 schoolchildren (aged
8–13 years)

Children with Zn deficiency had
higher HOMA-IR values. [58]

Dietary habits assessed via
FFQ and recalls,

Adherence to the MD
assessed by KIDMed score

George, E.S. et al. (2021),
cross-sectional study 1972 (aged 9–13 years)

Poor adherence to the MD was
associated with an increased likelihood

for central obesity,
hypertriglyceridemia, and insulin

resistance.

[47]

Mediterranean diet vs.
standard diet

Velasquez-Lopez L. et al. (2014),
randomized controlled trial

50 children and adolescents (aged
3–18 years) treated with

Mediterranean diet (60% of energy
from carbohydrate, 25% from fat,
and 15% from protein) (n = 24), or

a standard diet (55% of
carbohydrate, 30% from fat and

15% from protein)

The MD (16 weeks) improved the BMI,
glucose, and lipid profile in children
and adolescents with obesity and any

MetS components.

[48]

Adherence to the
Mediterranean diet

Mohammadi S. et al. (2022),
cross-sectional study 203 adolescents Higher adherence to the MD was

related to lower odds of MUO. [64]

High-fiber dietary pattern to
test changes in inflammation
indexes of the gut microbiota

Li H. et al. (2021), open-labelled
and self-controlled study

Prader-Willi Syndrome (PWS)
n = 18 (dietary intervention

30 days) and simple obese (SO)
children n = 19 (dietary
intervention 30 days)

In both cohorts, the high-fiber diet
reduced the abundance of virulence

factor, and particularly
pathogen-specific, genes.

[65]

Abbreviations: Ultra-Processed Foods (UPFs); Food Frequency Questionnaire (FFQ); Mediterranean Diet (MD);
Metabolic Unhealthy Obesity (MUO).

In conclusion, diet is a determinant in the development of obesity and MetS, and
dietary patterns and nutrients have distinctive effects on the inflammatory response and
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metabolic compensation. Unbalanced diets, such as those rich in sugars, refined carbo-
hydrates, SFAs and trans fatty acids, are associated with a pro-inflammatory status and
should be avoided. Several studies discuss the benefits of nutrients with anti-inflammatory
and antioxidant properties in modulating the low-grade inflammation triggered by obesity
and metabolic syndrome, but further research is still needed.

Inflammatory Bowel Diseases

IBDs, the main forms of which are ulcerative colitis (UC) and Crohn’s disease (CD),
are characterized by chronic relapsing–remitting inflammation of the gastrointestinal tract.
In these multifactorial diseases, diet plays the main role in the onset and progression
of IBD by influencing the composition and functioning of the gut microbiota, intestinal
barrier, immunity, and hormone release, acting on a genetic predisposition [3]. There is a
close interconnection and mutual influence between the gut microbiota and host mucosal
immune system: any slight disturbance in the microbial communities may contribute
to intestinal immune disruption and, according to recent research, alterations of the gut
microbiota may cause dysregulated mucosal immune responses, leading to the onset of
IBD in genetically susceptible hosts [68,69].

Several studies have documented an increasing incidence of IBDs, especially as a
result of the global spread of the Western lifestyle and eating habits [70–72]. In particular,
its high intake of simple and refined carbohydrates promotes intestinal dysbiosis and
inflammation [73]. An excess of any kind of carbohydrate in IBD patients with intestinal
malabsorption may easily exacerbate existing intestinal dysbiosis, which in turn may
contribute to the dysmetabolism of other nutrients [74].

On this basis, a dietary strategy proposed for patients with IBD is the Fermentable
Oligosaccharides, Disaccharides, Monosaccharides And Polyols (FODMAP) exclusion diet,
in order to relieve symptoms such as bloating, flatulence, cramping pain, and diarrhea, but
more studies are necessary to assess the long-term effects and its safety profile on nutrient
intake, as it is a restrictive diet [75,76]. Another proposed nutritional approach is the “spe-
cific carbohydrate diet” (SCD) which excludes gluten and restricts all carbohydrates except
monosaccharides (glucose, fructose, and galactose), allowing fresh fruits and vegetables,
with beneficial effects in controlling IBD although available data in adult and pediatric
populations are still limited [77,78].

The possible interplay of specific dietary food components and the gut microbiota of
IBD patients is shown in Table 2.

Apart from fruit and vegetable intake [79,80] or meat consumption, known for their
positive and negative implications, respectively [81–83], another point concerns the con-
sumption of gastro-resistant proteins which are capable of modifying and exacerbating
intestinal permeability [74], namely gluten [84–86] and caseins, from fermented and unfer-
mented dairy products [87–89]. Therefore, dietary indications for IBD patients include a
reduction in the overall amount of meat consumed, especially red and processed meat, and
the elimination or significant reduction of gluten and dairy products (caseins), except for
yogurt and kefir, which have shown positive effects [89].

In general, high-protein diets have a potential negative impact in patients with IBD,
although the protein source of the diet is still debated [80]. In fact, the reduced intestinal
ability to assimilate proteins, due to an intestinal disease, leads a portion of unabsorbed
proteins reaching the colon, where they alter the composition of the gut microbiota by
reducing beneficial bacteria such as Roseburia/Eubacterium rectale butyrate producers [74].
Moreover, an excess of protein can lead to an imbalance in the metabolites produced by
colon bacteria catabolism (e.g., ammonium, hydrogen sulfide, p-cresol, and phenol), which
can damage cells and the intestinal barrier [90].
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Table 2. Dietary food components under investigation in IBD patients and the proposed mechanisms
by which they influence the gut microbiota.

Dietary Food Component Potential Effect Proposed Mechanism Influencing the Gut Microbiota

Fruit and vegetables Protective against UC and CD
- ↑ Fermentation of complex CHO with production of

SCFAs → preserving the integrity of the intestinal
barrier → improving the immune response

Meat Risk of developing UC and CD

- ↓ oxidation of SCFAs, with alteration of the intestinal
mucosa → ↑ permeability to enteric pathogens

- Release of carcinogenic and mutagenic molecules
from high temperature cooking methods: possible
role in exacerbating UC and CD?

Gluten

Frequent gluten sensitivity in IBD
patients → substantial uncertainty
if gluten-free diet relieves
symptoms (under debate)

- Gluten gastro-resistant protein → during digestion ↑
release toxic and antigenic peptides → ↑ damage to
enterocytes and their tight junctions → ↓ intestinal
barrier

Non-fermented milk and
dairy products

Might display a
pro-inflammatory effect

- large quantities gastro-resistant proteins, i.e., caseins
→ potentially implicated in altered intestinal
permeability and gut dysbiosis

Fermented milks and
dairy products
(e.g., yogurt and kefir)

Beneficial effects

- Yogurt consumption has beneficial effects on
intestinal function → ↑ numbers of Lactobacillus,
Bifidobacterium, and Bacteroides

- Kefir has positive impact on IBD symptoms in adults

Salt Detrimental effect
- ↑ production of pro-inflammatory cytokines and ↑

intestinal permeability → ↓ SCFAs production and ↑
inflammation and in the gut

Artificial sweeteners (e.g.,
aspartame, saccharin, sucralose,
and acesulfame potassium)

Detrimental effect - can heighten intestinal inflammation by influencing
the homeostasis of gut microbiota

Maltodextrins (used to produce
soft drinks, candies, and energy
products for sports)

Detrimental effect - ↓ mucus production and impact on intestinal
epithelial cells → ↑ intestinal inflammation

Abbreviations: Ulcerative Colitis (UC); Crohn’s disease (CD); carbohydrates (CHO); Short Chain Fatty Acids
(SCFA); inflammatory bowel disease (IBD). ↑ = high/greater; ↓ = lower/less; → = as a consequence.

A low fiber intake has been related to an increased risk of IBD: a meta-analysis on the
association between fiber intake and the risk of IBD, including studies in children and the
adolescent population, established a significant inverse relationship between a high fiber
intake and risk of CD, but only a marginally significant association between fiber and a risk
of UC [91]. Although excessive fiber consumption could exacerbate the gastrointestinal
symptoms in these patients and may be contraindicated during the exacerbation phase
of the disease, fiber intake is still recommended after remission by limiting the intake of
insoluble fiber [77].

The WD is also characterized by a high intake of n-6 PUFAs and a low intake of n-3
PUFAs. Recent data address the protective effect of n-3 PUFAs in the prevention and
therapy of UC, while the consumption of a higher ratio of n-6/n-3 PUFAs was associated
with a higher incidence of UC [92]. The role of n-3 PUFAs in the prevention and therapy
of CD still appears controversial [93]. The intake of n-3 PUFAs can reduce the production
of pro-inflammatory agents (e.g., prostaglandin E2, thromboxane B2, and inflammatory
mediators of hydroxyicosatetraenoic acid) and can increase the synthesis of molecules such
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as resolvins, protectins, and maresins, which counteract the dysbiosis related to IBDs and
the down-regulation of pro-inflammatory genes.

The global increasing incidence of IBDs also concurs with an increase in the consump-
tion of UPFs [94–96]. A cohort study including 187.854 adults in the UK has shown that
a high intake of UPFs has been associated with a significantly increased risk of CD but
not UC [97]. Trakman et al. [98] demonstrated that Crohn’s disease patients, in early life
(0–18 years), show an increased intake of UPFs compared to various control groups.

UPFs are matter of concern due to both their high amount in salt [99] and the artificial
sweeteners or maltodextrins often present in carbonated drinks, candies, and energy prod-
ucts [80,100], which can heighten the intestinal inflammation in IBD patients (see Table 2).
Additionally, UPFs may contain nanoparticles such as titanium oxide and aluminum which
could increase their susceptibility to colitis. An important role is played by the high content
of emulsifiers, thickeners, and other additives in UPFs [101]. For example, emulsifiers, such
as carboxymethylcellulose and polysorbate-80 [102], cause the disruption of the mucosal
barrier and induce dysbiosis. Another commonly used additive is carrageenan, a gelling
agent and thickener derived from algae, which induces inflammation in animal models:
studies in animals show that carrageenan induces histopathological features similar to IBD,
alters the gut microbiota, and disrupts the intestinal epithelial barrier. In some pilot studies
in humans, the restriction of emulsifiers in diets has been associated with an improvement
in CD-related symptoms [103].

In conclusion, diet appears to have a crucial role in the pathogenesis and clinical course
of IBD, by modulating the inflammatory state underlying the disease and also through the
modulation of the gut microbiota composition. The different dietary approaches above
mentioned can optimize the management of these diseases; however, currently, the ideal
dietary model is still debated. Clinical evidence of the role of the diet in IBD patients
currently comes from studies conducted in adult populations, while evidence in pediatric
populations is still lacking.

3.1.2. Immune-Mediated Diseases
Type 1 Diabetes

Type 1 diabetes (T1D) is one of the most common autoimmune diseases in childhood.
In T1D, the immune response to self-antigens leads to the apoptosis of pancreatic β-cells,
resulting in lower insulin production and hyperglycemia. The clinical management of
T1D usually involves following a MD and carbohydrate counting [104]. As previously
mentioned, this dietary pattern can affect the gut microbiota composition [105]. Intestinal
dysbiosis, as a consequence, may play a role in the modulation of the immune system,
and this mechanism is associated with an increased risk for allergic and autoimmune
diseases [12]. A healthy diet, with a high intake of fiber and low levels of SFAs and
sugars, can help to prevent gut dysbiosis. Thus, genetically predisposed children should be
provided with a well-balanced diet to reduce the risk of developing T1D or other chronic
diseases [12].

Recent publications describe how the consumption of UPFs may have a negative
impact on the general health status [12] and the development of T1D in childhood, which
seems to be associated with a high intake of sugars [106]. Aguayo-Patròn et al. [12] reported
that a high intake of UPFs can lead to an increase in the susceptibility to autoimmune
diseases such as T1D [12,107]. Until now, only Pang et al. [108] have conducted a study
investigating the associations between UPFs’ consumption and obesity indicators among
individuals with and without T1D. The authors reported that individuals with T1D may
consume more UPFs than non-diabetic controls. Moreover, T1D participants who consumed
the highest amount of UPFs had a higher risk of increasing their weight and BMI than
those who consumed the least amount of UPFs over the 14 years of follow-up. However, no
statistically significant associations were observed for waist circumference, overweight or
obesity. A Swedish study reported that the higher intake of sugars, especially disaccharides
and sucrose, is associated with an increased risk of T1D [106,109]. On the contrary, another



Nutrients 2023, 15, 5095 9 of 30

study found that a high intake of carbohydrate-rich foods, but not of monosaccharides and
disaccharides, increases the risk of T1D with a non-linear dose–response curve [110].

Lastly, regarding the introduction of specific foods and their association with T1D,
the role of early nutrition needs to be addressed [111]. In one prospective cohort study, a
high consumption of cow’s milk at the age of 1 was reported as a dietary risk factor for
the induction of β-cell autoantibodies in 2-year-old children [112]. In line with this, the
early introduction of cow’s milk, before 5 month of age, was associated with a higher risk
for T1D [113]. Overall, cow milk proteins are known to have an intrinsic allergenicity,
particularly beta-lactoglobulin, bovine serum albumin, α-casein, and κ-casein [114]. An
increased humoral and cellular immunity to cow’s milk proteins in children with T1D is
not disease-specific but reflects a genetic predisposition to increased immunity to dietary
proteins in general [113]. Thus, an oral tolerance to cow milk antigens could be impaired in
individuals with a genetic susceptibility to T1D, and this could trigger autoimmunity [111].

In conclusion, early nutrition could influence traits related to autoimmunity, but
these implications need to be better clarified. The role of nutrition later on in life has
been investigated only in one study, which showed an association between high sugar
consumption and the risk of T1D in adult subjects; meanwhile, one study found that the
diet of diabetic subjects might be characterized by a high consumption of UPFs. In view of
this, it is not possible to establish whether a pro-inflammatory dietary pattern is a trigger for
the development of T1D. Further studies are needed to better understand the mechanisms
underlying these associations and whether a pro-inflammatory dietary pattern can worsen
a person’s susceptibility to autoimmune diseases like T1D.

Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory and immune-mediated disease of the
central nervous system (CNS), affecting mostly young women, particularly from Europe
and North America [115]. MS is characterized by immune dysregulation, which results in
the infiltration of the CNS by immune cells, triggering demyelination, axonal damage, and
neurodegeneration, and thus development of disability [116]. The pathogenesis of MS is
still unclear as it is multifactorial: based on a combination of genetic and environmental
factors [117]. Several studies have reported the possible role of dietary patterns as a risk
factor for MS and its progression, but the effect of individual dietary components on MS’s
pathogenesis has not yet been determined [118–120].

The indirect role of dietary factors in cardiovascular risk, obesity, or alterations
in the lipid profile, and in determining the chronic immune activation and inflamma-
tory status, particularly in the central nervous system due to oxidative stress, is well
known [4,119,121–125].

Interestingly, a recent observational single-center, cross-sectional study examined the
potential association between UPFs’ consumption and MS severity in a group of adult
Italian MS patients. Data showed that a higher consumption of UPFs was associated
with moderate to high MS severity compared to lower consumption after adjustments
for potential background (OR = 2.46, 95% CI: 1.04–5.83) and clinical confounding factors
(OR = 2.97, 95% CI: 1.13–7.77) [126].

In addition, Fitzgerald et al., in a large cross-sectional survey, showed that a healthy
diet rich in fruits, vegetables, legumes, whole grains, and dairy products, and low in added
sugars and red meat, and a healthy lifestyle, are associated with a lower burden of disability
symptoms in MS, such as depression, pain, fatigue, and cognitive impairment [127].

Some studies have highlighted the anti-inflammatory and neuroprotective properties
of a Ketogenic diet (KD) in MS [128]. The ketone bodies perform their neuroprotective
functions by reducing oxidative stress and ROS production, enhancing NADH oxidation,
which inhibits the mitochondrial permeability transition and directly affects the inflamma-
some [129].

Among the ketone bodies produced by the KD, β-hydroxybutyrate (BHB) reduces
L-1β-mediated NLRP3 inflammasome activation [130]. It exerts antidepressant effects,
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perhaps by inhibiting NLRP3-induced neuroinflammation in the hippocampus [131]. Fur-
thermore, NLRP3 appears to act as a bridge between the innate and adaptive immune
responses in the early stages of MS, promoting the migration of macrophages, dendritic
cells, and myelin-specific autoreactive CD4+ T cells into the CNS and, therefore, it may be
considered a critical factor in the development of neuroinflammation and an interesting
therapeutic target in immune-related disorders [132].

Another interesting topic concerns the crosstalk between the gut microbiota and the
central nervous system (CNS), called the “gut-brain axis”, which can be bi-directional:
“bottom-up” from the gut microbiota to the brain, and “top-down” from the brain to the gut
microbiota. Metabolites of the gut microbiota, such as SCFAs, tryptophan (Trp) metabolites,
and secondary bile acids, are the key players mediating this bottom-up communication,
and, in particular, SCFAs are, which appear to have numerous properties, including neu-
roactive functions [133,134]. The exact mechanisms by which SCFAs exert their effects
are largely unknown but several animal studies have demonstrated their influence on
key neurological and behavioral processes that may be involved in neurodevelopmental
and neurodegenerative disorders [135]. In addition, the microbiota, by producing neuro-
metabolites (such as serotonin/5-hydroxytryptamine, GABA, glutamate, phenylalanine,
Trp, tyrosine, carnosine, SCFAs, threonine, alanine, lysine, glycine, serine, aspartic acid,
ammonia, and gut hormone/incretins), can influence brain functions and brain influences
on gut activity. Therefore, diet plays a role in how the gut–brain axis functions [136].

To conclude, no evidence has shown that diet can be a trigger for the onset of MS.
Clinical and experimental studies provide indirect evidence that a balanced diet, combined
with an overall healthy lifestyle, is linked to an improvement in several clinical parameters
and measures of the quality of life in patients with MS, however, at present, there are
no precise recommendations regarding a specific dietary treatment for this disease [118].
Further studies should be conducted to clarify the role of dietary habits in the management
of MS.

Allergies

The prevalence of atopic diseases, including food allergies, has been increasing in
Western countries, becoming a public health problem [137,138]. Food allergies affect up
to 10% of the population, and mainly the pediatric one [139]. Allergic symptoms such as
asthma, eczema, and wheezing have been associated with an unhealthy diet and a high con-
sumption of UPFs and junk foods [139–142]. Schütte et al. reported that a pro-inflammatory
diet may worsen the atopic outcome and reduce an individual’s capacity to tolerate aller-
genic molecules [137]. Recent studies have suggested that the nutritional composition of
UPFs plays an important role in the development of allergic symptoms [141,142]. Several
studies have found a positive association between the consumption of UPFs and allergic
symptoms in children and adolescents [141–144]. Katidi et al. suggested that UPFs may
lead to a higher exposure to additives and allergens, which may contribute to the allergy
process [145]. This may be due to the higher content of allergens in UPFs compared to less-
processed foods [146]. Moreover, individuals with food allergies may develop sensitization
to other foods that contain homologous proteins [147]. Therefore, individuals affected by
multiple food allergies should be cautious about consuming UPFs [145]. There is increasing
evidence that the gut dysbiosis is related to the development of a food allergy, although
this specific pathogenesis is still unknown [142,148]. As previously mentioned, UPFs can
affect the gut microbiota composition, which in turn might influence the immune system
and the risk of developing a food allergy [105] Regarding allergies that are not food-related,
the impact of diet on asthma pathogenesis has been investigated [149,150]. A Brazilian
retrospective study found a positive association between the highest quintiles of UPFs’
consumption and asthma in adolescents [141]. Regarding specific food components, a high
intake of processed meat, defined as >4 servings/week, has been associated with increased
asthma symptoms compared to <1 serving/week in a prospective study in adults [140].
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Overall, further studies are needed to determine the causal relationship between a
pro-inflammatory dietary pattern or UPFs’ consumption and allergic disease [145].

3.1.3. Malignancies
Pediatric Cancer

Although cancer is relatively rare in childhood, it represents a leading cause of death
for children and adolescents, with an increasing incidence especially in several developed
countries [151,152]. The etiology remains unknown, unlike most adult cancers which are
often linked to environmental and lifestyle factors, including diet [153,154].

The impact of dietary patterns on modifying the risk of cancer has been extensively
investigated in relation to malignancies occurring in adulthood [153,155–157]. However, the
role of diet in the development and prevention of cancer in the pediatric population is still
unclear. In fact, the rarity of the disease and the challenges associated with assessing early
life diet limit the quality and quantity of evidence for causal associations between dietary
factors and pediatric tumors [158]. In addition, the malignancies that have been most
associated with certain dietary patterns (e.g., the WD and consumption of UPFs), include
breast, prostate, and colon–rectal cancers that do not commonly occur in children [155,157].
Furthermore, some of these cancers, such as colon neoplasia, are believed to have latency
periods of several decades. In contrast, cancers in children have shorter latencies of no
more than 15 years, and often less than 5 years [159].

The study of Harris et al. examined the potential association between an inflammatory
dietary pattern during adolescence and early adulthood with the occurrence of breast
cancer. Their findings support the hypothesis that a diet characterized by a high intake of
sugar-sweetened soft drinks, refined grains, red and processed meat, and a low intake of
green leafy vegetables may increase the incidence of premenopausal breast cancer [160].
Even though the consumption of red and processed meat during adulthood has been
recognized as a well-established risk factor for the development of colorectal cancer, two
large cohort studies found no significant correlation between the early life intake of red
and processed meat and the risk of colorectal neoplasia later in life [161,162]. These results
highlight the importance of considering the timing of exposure when examining this
association [159]. Studies have also evaluated maternal dietary patterns during gestation
and the risk for some childhood cancers: a recent systematic review suggested that a high
maternal dietary intake of vegetables, fruits, and protein sources, supplemented with folic
acid and multivitamins during pregnancy, could have a protective effect against childhood
acute leukemia [163].

The current evidence regarding the association between UPFs and cancer risk is still
scarce and limited to adult populations [164]. UPFs are indicators of poor food quality
and an imbalanced nutritional profile, contributing to weight gain and the risk of obesity,
which is recognized as a major risk factor for several malignancies [165]. In addition, UPFs
may contain neo-formed contaminants and food additives, for which carcinogenic and
endocrine-disrupting properties have been suggested in animal or cellular models [166].
Finally, they have a negative impact on health by altering the gut microbiome, disrupting
the energy balance and leading to the growth of microbes that encourage inflammation-
based diseases, including cancer [2,167].

On the contrary, the MD is known to have a protective effect, reducing the risk of cancer
as highlighted by a systematic review and meta-analysis showing that strict adherence to
the MD was related to a lower risk of various cancers as well as cancer mortality [153,168].

To date, there may not be strong evidence to suspect that dietary factors play a
significant role in the etiology and prevention of most childhood cancer, as there is in
adulthood [169]. However, the rarity of this disease and the time-limited dietary expo-
sure of children could limit the research on this potential association [158]. Indeed, the
potential harmful or protective effects of certain diets on cancer risk may be seen in the
long-term [159]. Thus, the majority of studies have focused on the more significant role of
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diet in preventing adult-onset cancer through dietary interventions beginning at young
ages [169,170].

3.2. Dietary Inflammatory Potential in Diseases Requiring Special Diets
3.2.1. Celiac Disease

Celiac disease (CeD) is a chronic immune-mediated enteropathy triggered by the
intake of dietary gluten and related proteins in genetically susceptible individuals [171].
It has become one of the most common food-related chronic intestinal diseases among
children [172,173] The pathogenesis of CeD is complex, and it still not fully understood. Be-
sides genetic and immunological factors, it appears that other environmental determinants,
including dietary patterns, can play a significant role in the development of CeD [174].

Auricchio et al. investigated a cohort of children with a genetic predisposition to
CeD. The children who eventually developed CeD consumed more carbs and less legumes,
vegetables, fruits, and dairy products, suggesting that an increased risk of CeD is not only
attributed to the amount of gluten consumed, but also the consumption of pro-inflammatory
nutrients commonly found in Western-style diets [175].

Although there is currently a limited understanding of the correlation between the
WD and CeD, there are potential causal links indicating that the WD may be involved in
CeD pathogenesis by inducing mucosal inflammation, increasing intestinal permeability,
and altering the gut microbiota, ultimately leading to endotoxemia [176].

Furthermore, Aguayo-Patrón et al.’s study suggested that an excessive consumption of
UPFs could contribute to an increased susceptibility to CeD through a microbiota imbalance.
Dietary patterns with high fat and sugar intakes result in intestinal dysbiosis, which
promotes a pro-inflammatory immune response and increases gut barrier permeability,
allowing gluten peptides to cross the lamina propria and facilitating an immune response
in genetically susceptible individuals [12,177,178].

At present, the only effective treatment of CeD is a lifelong strict gluten-free diet
(GFD) [179]. However, there is conflicting evidence regarding the nutritional quality of
a GFD, with some studies indicating its imbalanced nutrient profile due to an excessive
intake of sugars and fats and insufficient amounts of carbohydrates, fiber, and micronutri-
ents [180,181].

Additionally, the challenge of following dietary recommendations for individuals with
CeD may also be due to inadequate food choices, as they may replace gluten-containing
products with highly processed gluten-free alternatives like UPFs [12,182–185]. Further-
more, Nestares et al. reported that young patients with CeD who consumed more UPFs
presented higher levels of oxidative stress biomarkers and pro-inflammatory cytokines
compared to CeD children consuming less than 50% of their daily energy intake from UPFs
and control children [182]. This can lead to the exacerbation of mucosal inflammation and
gut microbiota dysbiosis, which can also aggravate CeD pathophysiology and generate a
vicious cycle [17,182,186].

Overall, it is essential to improve nutritional education among individuals with CeD,
in order to promote a healthy, balanced dietary regimen starting from an early age [180].
One of the dietary patterns with robust evidence of its beneficial effect on a person’s health
status is the MD [187]. The protective effect against CeD may be explained by its anti-
inflammatory potential, also partially mediated by an interplay with the gut microbiota [12].
Furthermore, according to a study by Barroso et al., adherence from the first months of life to
the MD was associated with lower odds of CeD autoimmunity, suggesting its preventative
role in the development of CeD [188]. Therefore, diet seems to plays a key role in the
pathogenesis and prevention of CeD [174], albeit with limited evidence in children.

3.2.2. Phenylketonuria

Phenylketonuria (PKU) is a rare autosomal recessive inborn error of the metabolism,
in which the impaired activity of phenylalanine hydroxylase leads to the accumulation of
phenylalanine (Phe) in the blood, which becomes toxic in the brain. Untreated patients
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present with irreversible intellectual disability, autism, aberrant behavior, developmental
problems, microcephaly, motor deficits, seizures, and psychiatric symptoms [189,190].
Treatment is primarily dietetic and based on natural protein restriction combined with
the consumption of special low-protein foods and Phe-free L-amino acid supplements
(L-AAs) [191]. Although improvements in the administration and composition of protein
substitutes have recently been developed, suboptimal outcomes are still reported in the
literature, probably due to reduced patient compliance to the diet, but also to their chronic
metabolic implications [192–195].

Phe-free L-AAs are protein substitutes with different absorption profiles than intact
proteins, due to their higher plasma concentrations, faster absorption peaks, and steeper
blood concentration reductions, resulting in their negative impact on the nitrogen bal-
ance [196]. Fast absorption is associated with the higher oxidation of amino acids (AAs),
higher blood urea nitrogen (BUN) levels, and lower protein accretion than the slow di-
gestion of proteins, which instead ensures the efficient postprandial utilization of dietary
nitrogen [197,198]. A high BUN suggests that supplemented AAs are not used for protein
synthesis but are instead oxidized for energy production [199,200].

BUN is also a marker of proteolysis [198] and muscle is the main organ affected by the
catabolic state generated by proteolysis in PKU patients [31].

Modifying the Phe-free L-AAs’ absorption kinetics may improve the efficiency of
protein metabolism, reduce AAs’ oxidation, and have a positive impact on the nitrogen
balance. Prolonging AAs’ uptake may also reduce the incidence and severity of catabolic
episodes, thereby reducing fluctuations in blood Phe levels [193] This hypothesis is sup-
ported by studies in which the percentage of lean mass is associated with the amount of
intact protein intake in the PKU diet [201]. Furthermore, children taking bioactive casein
Glycomacropeptide (GMP), a natural peptide almost devoid of Phe, have been shown to
have a trend of higher height z scores, a greater lean body mass, and a lower fat mass
compared to children who took only AAs or a combination of GMP and AAs [202].

Results from a recent study conducted on a murine model suggests that the intake
of a Phe-free L-AAs mixture engineered to prolong AAs’ absorption via Physiomimic
Technology (AAs-PT) may reduce AAs’ oxidation and, consequently, BUN, by maintaining
a good catabolic/anabolic balance. In addition, AAs-PT may reduce muscle degradation
and fluctuations in insulin and glucose values, contributing to the maintenance of a normal
satiety response [203]. Similar effects on the nitrogen balance and glycemic and insulinemic
profile have been observed in healthy adult humans [204]. In conclusion, several protein
substitutes are available, but no single one is able to totally mimic natural protein intakes
in terms of their impact on the nitrogen balance and metabolic status [192].

Another important aspect to consider in patients with PKU is the gut microbiota [205,206].
Even though the disease itself could be directly responsible for the altered composition
of the microbiota [190], diet is one of the most crucial determinants of microbiota com-
position. The quality of the consumed carbohydrates (special low-protein products with
added glucose and sugar to ameliorate palatability) is a key factor in determining the
gut microbial composition and the production of SCFAs, because of the carbohydrates’
higher daily glycemic index and glycemic load. Indeed, if compared to patients with mild
hyperphenylalaninemia (MHP) on a free diet, PKU children adhering to a low-Phe diet
have a lower microbial diversity and reduced total SCFA and butyrate content, due to
the reduction of certain beneficial species, in particular Faecalibacterium prausnitzii and
Roseburia spp., which are the main producers of butyrate [207]; PKU subjects are also
depleted of Ruminococcaceae and Veillonellaceae families, while they are enriched in the
genera Blautia and Clostridium spp. (family Lachnospiraceae) [208]. This pattern may
promote an intestinal inflammatory status [35].

A Brazilian case–control study showed a lower alpha diversity in PKU children’s gut
microbiota, although with an enrichment in Prevotella, Akkermansia, and Peptostreptococ-
caceae. At the metagenome level, prediction of the microbial function suggested significant
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differences in the starch/glucose and amino acid metabolism of bacterial functions in PKU
patients [209].

Microbiota alterations related to the use of low-protein products and protein substi-
tutes have also been demonstrated, while starches high in amylose and soluble fibers could
increase SCFAs’ production [210].

An altered “gut-liver” crosstalk network (“gut-liver axis”) can lead to endotoxemia,
increased oxidative stress, and a related risk of NCDs [206]. An increase in the triglyceride-
glucose index (TyG index), a marker of low-grade inflammation and peripheral insulin
resistance, has also been observed in children with PKU, compared to age- and sex-matched
healthy controls. Indeed, Moretti et al. showed a positive correlation between the TyG
index and the glycemic load in PKU, which is higher than the normal values, strengthening
the hypothesis of a possible link between the quality of carbohydrates consumed and a
susceptibility to the development of metabolic disorders [211].

In conclusion, a disease-specific diet for patients with PKU, including low-protein
products and protein substitutes, with added glucose and sugar to ameliorate palatability,
may impair the gut microbiota, inducing a proinflammatory status. Achieving eubiosis by
improving the quality of dietary products and blends, and the use of pre-, pro-, and postbi-
otics, could be both a preventive and therapeutic strategy in this complex disease. In PKU
children, the consumption of GMP seems to provide a positive effect on the microbiota’s
composition by increasing beneficial bacteria such as Agathobacter and Subdoligranulum,
and seems to have prebiotic activity [212].

3.2.3. Glycogen Storage Diseases

Glycogen storage diseases (GSDs) are hereditary metabolic disorders occurring due
to the deficiency of an enzyme involved in glycogen metabolism [213]. Hepatic GSDs
clinically present with hepatomegaly, a failure to thrive, and fasting intolerance. The
most frequently associated laboratory finding is hypoglycemia, which is secondary to the
impairment of endogenous glucose production during short fasting [214]. GSD type I
(GSDI) is the most frequent and severe form of hepatic GSD [215,216]. Its subtype GSDIb
is typically associated with neutrophil disfunction and IBD [217], however, a few cases of
IBD have been recently reported in the subtype GSDIa as well [218,219].

Long-term complications in GSDI patients mainly involve the liver, with the develop-
ment of hepatocellular adenomas (HCA) and hepatocellular carcinomas (HCC); the kidney,
evolving into renal insufficiency; growth; joints, with gout manifestations; and bones, with
osteoporosis [220,221].

For hepatic GSDs, the dietary treatment consists of avoiding fasting by eating frequent
meals and eating complex carbohydrates, specifically uncooked cornstarch (UCCS), to com-
bat the impairment of the glycogenolytic pathway and hypoglycemia [222,223].According
to latest guidelines on GSDI patients, calories should be provided with 60–70% from
carbohydrates, as reported in the last guidelines, however, the intake of complex carbo-
hydrates should not result in overfeeding, which can lead to hyperinsulinemia, insulin
resistance, obesity, and nutrient deficiencies [224]. The administration of UCCS should be
personalized, based on the patient’s needs, while monitoring their glycemic and metabolic
parameters [224]. Overloading UCCS in the diet of these patients may cause dysbiosis,
which can promote an inflammatory status both locally in the gut mucosa and systemically.

The actual etiopathogenesis of dysbiosis in patients with GSDI still remains not fully
understood, but this typical dietary pattern may contribute to it influencing the clini-
cal “enterophenotype” [225–227]. Indeed, an UCCS overload may lower the fecal pH
and decrease the conversion of unabsorbable starches to SCFAs [228]. SCFA-producing
bacteria—Coprococcus, Blautia, Anaerostipes, Odoribacter, and Faecalibacterium—were
decreased in GSD patients treated with UCCS in comparison to controls [223]. Consistently
with previous studies [229], diet was revealed to be the major driver of the difference in the
gut microbiome composition between patients and healthy controls [223].
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Ceccarani at al. (2020) conducted a similar study on GSDI patients, reporting that
UCCS intake was associated with Veillonella, Citrobacter, and Akkermansia genera, and
negatively correlated to Coprococcus and Clostridium genera [230]. A strong reduction
in intestinal microbiota richness and diversity was observed in GSD patients, with a
dramatic increase in the phylum Proteobacteria and a relative abundance of Escherichia
coli, observed both in type Ia and Ib GSD patients [230].

Other microbiota characteristics found in GSD patients potentially related to both diet
and the gut microbiota, which may contribute to inflammation, are synthesized in Table 3.

Table 3. Microbiota characteristics found in GSD patients which may contribute to an inflammatory
status.

Characteristic Role in Inflammation References

Depletion of
SCFAs-producing bacteria Reduced anti-inflammatory effect of SCFAs [223,230]

Enrichment in Blautia genus Induction of cytokines’ secretion by host cells [230,231]

Depletion of Firmicutes phyla Reduced biodiversity in the human gut [230]

Depletion of Oscillospira and
Faecalibacterium spp.

Dysbiosis, a constant finding in
inflammatory diseases such as Crohn’s

disease and nonalcoholic steatohepatitis
[230,232,233]

Depletion of Christensenella
minuta (Oscillospira spp.)

A correlation between Christensenella
minuta and a lower BMI has been

demonstrated
[230,234,235]

Depletion of Faecalibacterium Association with NAFLD [221,222]

In addition, a high carbohydrate diet, in association with a high fat intake, seems to
promote metabolic stress in the hepatic cells, accelerating carcinogenesis, which is one of the
main complications in hepatic GSDs [236]. Gjorgjieva et al. (2018) demonstrated a highly
accelerated tumor initiation and malignant transformation into HCC in GSDIa murine
models fed a high-fat and high-sucrose (HF/HS) diet in comparison with GSDIa mice and
healthy mice fed a standard chow diet [237]. The HF/HS diet exacerbated lipid accumula-
tion and greatly increased the incidence of hepatic tumors and their transformation into
HCCs in GSDIa mice, but it did not induce tumorigenesis in wild-type mice. Therefore, the
authors concluded that the metabolic reprogramming induced by the G6Pase loss seems to
provide a more hospitable environment for hepatic tumorigenesis and that the HF/HS diet
probably further accelerates tumorigenesis by providing more substrates for glycolysis and
lipid synthesis. Microbiota may contribute to hepatic tumorigenesis [219,220,238]. Indeed,
Faecalibacterium was found to have a significantly low abundance in patients with NAFLD,
independently of their body mass index and insulin resistance [151]. Although NAFLD
may cause liver cirrhosis, which predisposes the liver to HCC, it has been demonstrated
that HCC can also develop in the absence of cirrhosis [221,223].

In conclusion, as reported for PKU, these studies showed how profoundly these pa-
tients’ disease-specific diet may impair the gut microbiota, and the hepatic cells’ metabolism,
inducing a chronic inflammatory status, also systemically, which may contribute to the
development of long-term complications in GSD patients.

Figure 3 shows a graphical representation of the main foods or nutrients with pro-
inflammatory effects for each disease or group of diseases analyzed.
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The nutritional considerations in Table 4 include some of the main limitations of the
studies available in the literature to date. In fact, for obesity, a widespread condition
for which more research is available, studies should better detail both the quality of the
foods consumed, their content in terms of nutritional composition, and how much the
actual intake exceeds or is lower than the dietary guidelines for sex and age. For diseases
requiring a specific diet, there are few and heterogeneous studies available for children.
Future research should focus more on the specific nutritional changes required to enable
disease control, both in terms of dietary patterns and specific nutrients’ intake, and how
these may influence the risk of occurrence of other diseases or the composition of the
gut microbiota.

Table 4. Summary of the research and nutritional considerations from the studies collected.

Disease Studies in Pediatric Age Research Consideration Nutritional Consideration

YES NO

Multifactorial diet-related diseases

Obesity and
metabolic
syndrome

√ Eight studies on both children and
adolescents

[43,47,48,50,57,58,64,65]

Nutrition is an environmental factor
that influences inflammatory pathways.
Several available studies evaluate not
only individual nutrients or foods, but

investigate nutrition complexity
through dietary pattern analysis.

Inflammatory
bowel

diseases

√ Multiple experimental studies and
clinical trials on adult patients

The excessive intake of specific
macronutrients

enriched in a Western diet affects gut
health and promotes gut inflammation.
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Table 4. Cont.

Disease Studies in Pediatric Age Research Consideration Nutritional Consideration

Immune-mediated diseases

Type 1
diabetes

√

In two studies early nutrition was
evaluated as a trigger for autoimmunity

in adolescence and adulthood. With
regard to dietary patterns, there is

substantial uncertainty. Only association
studies on adult patients are available

[108,110]

The impacts of the early consumption of
cow’s milk proteins, sugar intakes, and

UPFs’ consumption was under
investigation.

Multiple
sclerosis

√ Only one study on adult patients
evaluated UPFs’ consumption

UPFs’ consumption in MS should be
assessed as early as possible but specific

tools are needed.

Allergies
√ Five studies on children

[141–145]

UPFs’ intake is associated with allergic
outcomes. The role of the microbiota as
a mediator between diet and tolerance

must be investigated.

Malignancies

Pediatric
cancer

√ Two studies on adolescents
[160,162]

UPFs’ consumption should be assessed
because of low dietary quality.

Diseases with dietary treatment

Celiac disease
√ Four studies on children related to UPFs’

consumption
[175,180,182,183]

Gluten-free food should be included in
the categorization of UPFs.

Phenylketonuria
√ Five studies on both children

and adolescents
[202,207,208,211,212]

The intake of low-protein products and
protein substitutes, with added glucose

and sugar to ameliorate palatability,
impair the production of SCFAs,

because of their higher daily glycemic
index and glycemic load. This condition

could promote a pro-inflammatory
status. Future clinical studies

are needed.

Glycogen
storage
diseases

√ Three studies on both children and
adolescents

[226,228,230]

The high carbohydrate diet and the
overload of uncooked cornstarch

(UCCS), which is the main treatment in
hepatic GSDs, may impair the gut

microbiota and hepatic cells’
metabolism, inducing a chronic local

and systemic inflammatory status.

4. Conclusions

Based on the evidence collected in this literature review, the importance of educating
young children and adolescents affected by specific diseases to not only exclude or limit
certain types of foods for long-life diet therapeutic reasons, but also to provide quality
alternatives and avoid the high consumption of “allowed” but unhealthy foods, emerges.
Health professionals must therefore take a wider point of view, consider the entire dietary
pattern, and not only focus on pathology.

Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory
diets has been addressed not only for obesity and metabolic syndrome, but also for adult
patients with IBD. In the latter, the main connection between diet and health resides in the
gut microbiota and its adequate eubiosis. For multiple sclerosis, the role of diet-related
oxidative stress is also emerging, with its consequent chronic immune activation and an
inflammatory status that impacts the central nervous system. Future studies will elucidate
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the implication of dietary pattern in children with T1D and pediatric cancer. Regarding
disease requiring special diets, studies reveal that consumption of pro-inflammatory foods
can coexist in such conditions. Aware of the mandatory life-long diet therapy, it is up to the
specialist to recommend targeted nutritional strategies to limit their consumption.

Considering the results obtained from this narrative review, it emerges that nutritional
studies are still mainly focusing on the study of single nutrients or food intake without
giving importance to the complexity of all the diet. Future studies should address nutrition
through dietary pattern analysis and focus on other diet-related factors, including dietary
habits, lifestyle, socio-economic conditions as well as barriers and resources influencing
eating behaviors.

The development of a standard method for detecting dietary pattern adherence is a
strategy for considering the diet as a set of factors that simultaneously affect health status.
Currently, only some scores to assess children’s adherence to a Mediterranean-like dietary
pattern are available, whilst less is known on how to assess pro-inflammatory dietary
habits in pediatric age [239]. The implementation of these scores might help in providing
targeted nutritional intervention, aimed at reducing the adoption of pro-inflammatory
diets. Research should be conducted on the consumption of UPFs in children and identify a
standard method (i.e., food frequency questionnaires) to assess their consumption. A final
outline of the different implications for the prevention of and medical nutrition therapy
for diet-related diseases and for those benefiting from special diets is provided in Figure 4.
Finally, in terms of those diseases whose onset is affected by dietary habits, while, at the
same time, dietary therapy is an integral part of the treatment of the disease itself, Figure 4
summarizes considerations regarding the importance of nutrition on symptomatology,
disease management, and the quality of life for patients. Multidisciplinary management
with the active involvement of community professionals, together with the implementation
of telemedicine, could not only allow for better dietary adherence, but also reduce the
development of pathologies and complications, reducing healthcare costs.
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Figure 4. Considerations for diseases’ management and the impact of nutrition. (a) The first flow
chart shows diet-related diseases. In obesity, there is confirmed evidence in the pediatric setting, and
in IBD only in the adult setting. Prevention of these pathologies should start locally, with the family
pediatrician evaluating the dietary habits of the family and assessing the presence of risk factors for
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obesity or IBD. If the risk is confirmed, a tailored intervention to promote the Mediterranean diet
should be addressed to the whole family, in collaboration with a nutrition professional, and sup-
porting lifestyle changes with the help of telemedicine tools, educational peer groups, and the
administration of Mediterranean diet adherence questionnaires. (b) For diseases requiring a special
diet (food allergies, CeD, PKU, and GSD), the treatment setting is the hospital, but there must be
close collaboration with the family pediatrician. The dietetic nutritional goal is not only the control
of the disease itself but the promotion of healthy eating habits through personalized interventions.
(c) For IBD, multiple sclerosis, T1D, allergies, and cancer, the pro-inflammatory potential of dietary
habits during the onset of the disease has been demonstrated in studies on children and adults. After
diagnosis, diet also plays an important role in disease management. For IBD, pro-inflammatory
dietary habits impact gut inflammation and thus the frequency and intensity of recurrences. There is
little evidence for MS and allergies but correct dietary habits could influence symptom control. The
gut–brain axis in MS should still be explored. In T1D, the proper management of insulin therapy
depends strongly on the patient’s dietary habits. Finally, even for some types of cancer, compliance
with nutritional therapy determines the prevention of the risk of malnutrition and the proper man-
agement of therapies’ side effects. All these diseases are affected by dietary therapy in terms of the
prevention of the recurrence of acute events of the disease, as is the quality of life.
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Appendix A. Research Strategies Used in This Narrative Review

1. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh]
OR “Ultra-processed food”[Title/Abstract]) AND (“Pediatric Obesity”[Mesh] OR
“Obesity”[Mesh] OR “Metabolic Syndrome”[Mesh]) AND (2008:2023[pdat]) AND
(allchild[Filter]). Number of documents = 871

2. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh] OR
“Ultra-processed food”[Title/Abstract] OR “Diet Therapy”[Mesh]) AND (“Diabetes
Mellitus, Type 1”[Mesh] OR “Diabetes Type 1”[Title/Abstract]) AND (2008:2023[pdat])
AND (allchild[Filter]). Number of documents = 317

3. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh]
OR “Diet Therapy”[Mesh]) AND (“Inflammatory Bowel Diseases”[Mesh] OR “Col-
itis, Ulcerative”[Mesh] OR “Crohn Disease”[Mesh]) AND (2008:2023[pdat]) AND
(allchild[Filter]). Number of documents = 442

4. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh]
OR “Ultra-processed food”[Title/Abstract] OR “Diet Therapy”[Mesh]) AND (“Mul-
tiple Sclerosis”[Mesh]) AND (2008:2023[pdat]) AND (allchild[Filter]). Number of
documents = 70

5. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh] OR
“Ultra-processed food”[Title/Abstract]) AND (“cancer*” OR “tumor*” OR ”neoplasia*”
[tiab]) AND (2008:2023[pdat]) AND (allchild[Filter]). Number of documents = 26
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6. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh] OR
“Ultra-processed food”[Title/Abstract] OR “Diet Therapy”[Mesh] OR “special diet”
[tiab]) AND (“allerg*” [tiab] OR “food allerg*” [tiab] OR “Food Hypersensitivity”[Mesh])
AND (2008:2023[pdat]) AND (allchild[Filter]). Number of documents = 223

7. (“Inflammation”[Mesh] OR “Diet, Western”[Mesh] OR “Food, Processed”[Mesh] OR
“Ultra-processed food”[Title/Abstract] OR “Diet Therapy”[Mesh] OR “Diet, Gluten-
Free”[Mesh] OR “special diet” [tiab]) AND (“Celiac Disease”[Mesh] OR “coeliac disease”
[tiab]) AND (2008:2023[pdat]) AND (allchild[Filter]). Number of documents = 958

8. (“Inflammation”[Mesh] OR “Food, Processed”[Mesh] OR “Ultra-processed food”[Title/
Abstract] OR “Diet Therapy”[Mesh] OR “special diet” [tiab]) AND (“Phenylke-
tonurias”[Mesh] OR “PKU” [tiab]) AND (2008:2023[pdat]) AND (allchild[Filter]).
Number of documents = 64

9. (“Inflammation”[Mesh] OR “Food, Processed”[Mesh] OR “Ultra-processed food”[Title/
Abstract] OR “Diet Therapy”[Mesh] OR “special diet” [tiab]) AND (“Glycogen Stor-
age Disease”[Mesh] OR “GSD” [tiab]) AND (2008:2023[pdat]) AND (allchild[Filter]).
Number of documents = 18
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