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Pronking and bounding
allow a fast escape across
a grassland populated by
scattered obstacles
Francesco Righini1, Marina Carpineti1, Fabio Giavazzi2
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Some quadrupeds have evolved the ability of pronking, which
consists in leaping by extending the four limbs simultaneously.
Pronking is typically observed in some ungulate species
inhabiting grassland populated by obstacles such as shrubs,
rocks and fallen branches scattered across the environment.
Several possible explanations have been proposed for this
peculiar behaviour, including the honest signalling of the
fitness of the individual to predators or the transmission of a
warning alert to conspecifics, but so far none of them has
been advocated as conclusive. In this work, we investigate
the kinematics of pronking on a two-dimensional landscape
populated by randomly scattered obstacles. We show that
when the density of obstacles is larger than a critical
threshold, pronking becomes the gait that maximizes the
probability of trespassing in the shortest possible time all the
obstacles distributed across the distance fled, and thus
represents an effective escape strategy based on a simple
open-loop control. The transition between pronking and
more conventional gaits such as trotting and galloping occurs
at a threshold obstacle density and is continuous for a non-
increasing monotone distribution of the height of obstacles,
and discrete when the distribution is peaked at a non-zero
height. We discuss the implications of our results for the
autonomous robotic exploration on unstructured terrain.
1. Introduction
Animals have evolved different modes of legged locomotion
in the environment surrounding them [1], with a strong
specialization of the locomotor system dictated by the needs of
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predation and escape [2]. On land, galloping represents an effective strategy to achieve a fast horizontal
speed, which on a flat landscape maximizes the probability of a prey surviving a hunt, and for a predator
the probability of a successful catch. In general, galloping allows the stride to be directed as much as
possible horizontally and to maximize stride length, but a purely horizontal thrust is prevented by the
bio-mechanical structure of the animal, by need of supporting its weight, and by the need of
providing a reaction of the terrain [3]. When the environment is populated by obstacles of size
comparable to or larger than that of the animal, leaping becomes an effective moving strategy that
allows it to achieve a fast displacement, while simultaneously avoiding being stuck by obstacles.
Pronking, or stotting, is a peculiar behaviour adopted by some mammalians that consists of
repeatedly extending the four limbs simultaneously to achieve a sequence of leaps. Pronking has
evolved independently in several animal species across the globe, including artiodactyls like the
Columbian black-tailed deer and the mule deer in northern America [4,5], the Thomson gazelle in
Africa [6] and rodents like mara in South America [7]. Pronking has also been reported in eight
legged opilionids like harvestmen, which adopt it as an escape manoeuver [8]. Some other species,
including jumping mouse, woodland mouse, wild hare and many others, adopt an escape strategy
based on a bounding gait, which consists of the simultaneous extension of the hind legs that is used
to leap repeatedly. The high energy loss determined by the impact with the terrain does not make
pronking and bounding efficient gaits to travel rapidly in an obstacle ridden environment [9]. Indeed,
the motivation for pronking is still debated in the scientific community [10], and several possible
explanations have been proposed [11], among which are the signalling to con-specifics of the presence
of predators [12], an honest signal to predators of the fitness of the potential prey [13] and a fast
escape from predators on a rugged terrain [14]. A common feature of the species that exhibit pronking
and bounding is that they typically inhabit open environments, such as flat grassland populated by
sparse natural obstacles, and that they exhibit cursorial adaptations aimed at predation avoidance. In
this work, we develop a minimal kinematic model for the escape of an animal based on the selection
between two possible locomotor gaits. The two gaits consist either of a sequence of forward steps
directed horizontally to maximize speed, as occurs in the case of running, trotting and galloping, or
in a sequence of angled leaps that allow the animal to overpass obstacles, as in the case of pronking
and bounding. We consider the limit case of an arbitrarily small duty cycle of the stride, where a
nearly instantaneous propulsive phase is followed by a ballistic phase that dominates the duration
and length of the stride. Under this assumption, the motion of the animal can be mostly entirely
described kinematically as a sequence of ballistic phases. We assume that the modulus of the velocity
v0 at the end of the propulsive phase of each step or leap is fixed, while the take-off angle θ formed
with the horizontal plane can change. We consider the real case of mammalians of medium–large size
with a large Reynolds number and a small Froude number, a condition that allows neglecting the
drag exerted by air during the jump [15,16]. A fast horizontal speed of locomotion and the ability of
overpassing a series of obstacles are the two key factors that determine the survival of a prey during
an escape run. However, the maximization of one of these two parameters is in conflict with the
maximization of the other. Indeed, the successful fleeing of a prey from a predator requires jumping
over obstacles to avoid being slowed down or stuck by them. In general, visual clues can largely help
negotiate an obstacle, with the drawback that the presence of multiple obstacles requires a very fast
processing of these clues from the nervous system of the animal. Conversely, an open-loop escape
strategy like the one discussed in our work relies on the fast automatic replication of a set of actions,
in our case a set of identical leaps, which maximizes statistically the probability of survival, without
the need for an active processing of information on the geometry of the environment. A meaningful
example of an open-loop escape strategy is represented by the free fall of the pebble toad. When
chased by a predator, the toad folds its limbs to assume a compact rounded shape, and lets its body
fall down the cliffs where it lives. This manoeuver determines a fast displacement of the animal that
does not require a prior knowledge of the geometric details of the environment. This manoeuver is
not routinely adopted by the toad to move over the terrain, but only in the case of danger, due to the
high stress imposed by it on the body of the animal. More generally, when escaping animals can
adopt highly costly strategies, including caudal autotomy, which largely affects the subsequent
deambulation capabilities of the animal. For these reasons, in our analysis we do not take into
consideration a cost for the adoption of an escape strategy.

When fleeing with a sequence of leaps, the best open-loop strategy to overcome large obstacles is to
jump with a take-off angle close to 90° with respect to the horizontal plane, because this is the condition
that maximizes the height reached during the aerial phase of the jump. This escape strategy has the major
drawback that the thrust is directed vertically and does not allow a horizontal displacement of the prey.
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Conversely, the horizontal speed is maximized in the presence of a purely horizontal thrust for a take-off
angle of 0°, a strategy that does not allow any obstacle to be overcome.

We show that a suitable figure of merit for the survival of preys during an escape run on a landscape
populated by random obstacles is represented by the product of the horizontal component of the velocity
and of the probability of overpassing a sequence of obstacles. The maximization of this figure of merit
yields the result that when the density of obstacles is larger than a critical threshold pronking
becomes the most effective escape strategy, while for densities smaller than the threshold gaits like
galloping that optimize horizontal thrust are more effective. We discuss how the features of the
probability distribution for the height of obstacles affect the nature of the transition. In the presence of
a non-increasing monotone distribution, the transition is continuous, while in the presence of a single-
peaked distribution with maximum value at a finite non-zero height of the obstacle the transition
is discrete.

The investigation of animal gaits has bio-mimetic applications to the development of robots with
versatile motion, able to adapt to different needs [17–23]. Pronking is one of the most-studied gaits, as
it allows for obtaining a fast and stable motion with a limited number of control parameters, due to
the fact that all the legs are parallel and move in phase [18,24–27]. In the case of movement in an
uneven environment [28–32], pronking can be a particularly effective gait to manage the problem of
over-passing obstacles [19,31]. The results of our work could pave the way for further applications of
pronking as a favourite choice for the development of robots that have to move in a terrain with
randomly distributed natural boundaries.
30587
2. Model
2.1. Kinematics
We consider a population of animals inhabiting a flat landscape populated by random obstacles. When a
specimen is chased by a predator, it escapes by moving in a prescribed direction through a sequence of
identical leaps. Each leap is preceded by a short thrust phase that brings the animal to an initial velocity
v0 characterized by a take-off angle θ with respect to the horizontal ground plane. Neglecting air drag,
the equations of motion for each leap are

xðtÞ ¼ x0 þ v0 t cosðuÞ ð2:1Þ
and

yðtÞ ¼ v0 t sinðuÞ � 1
2
g t2, ð2:2Þ

where x and y are the horizontal and vertical coordinates, x0 is the initial position of the animal
on the ground at the beginning of the leap, and g is the acceleration of gravity. The range of each
leap is xR = 2 xM sin (θ) cos (θ), where xM ¼ v02=g is the maximum range, achieved for a take-off angle
of 45�. The top height reached during a leap is yT = xM sin2(θ)/2, which achieves the maximum
value yM = xM/2 for a take-off angle θ = 90°. In the following, we will use yM as a typical length scale of
the problem.
2.2. Single leap in the presence of a single obstacle
We first consider the case where a single obstacle is present. The obstacle is represented by a thin vertical
barrier extending from the ground up to a height h. We consider a leap successful if it overcomes the
obstacle or, equivalently, if the top edge of the obstacle remains under the trajectory (figure 1).

The statistical properties of the obstacles are described in terms of two probability density functions
λ(x) and ρ(h) governing the position of the obstacle and its height, respectively. The success probability of
a leap characterized by a trajectory y(x) is thus given by

P ¼
ðxR
0

ðyðxÞ
0

rðhÞdh
 !

lðxÞdx: ð2:3Þ

We assume that the probability density function λ(x) for the position of the obstacle is uniform over
an interval of width Lmax ≥ xM. Different possibilities can be considered for the height distribution of the
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LmaxXend
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Figure 1. Single leap against one obstacle. The solid blue line represents a generic trajectory. (a) Possible position for the top edge
of the obstacle during a successful jump (green region). (b) Successful trespass of an obstacle. (c) Failure due to a crash on an
obstacle. (d ) Failure due to an obstacle not reached.
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obstacle. In the simple case where ρ is uniform from 0 to hmax, with hmax ≥ yM, the success probability P
can be calculated analytically and shown to be

P ¼ 8
3

y2M
hmaxLmax

sin3ðuÞ cosðuÞ: ð2:4Þ

In this case, P is simply proportional to the area below the trajectory, which is maximized by the take-
off angle θ = 60°.

Incidentally, a leap angle of 60� represents a good trade-off between the need of reaching
simultaneously a jump height and range as large as possible during an escape. Larvae of species
like fruit flies and gall midge and insects like froghoppers have evolved to leap with a take-off angle
of 60� and are able to escape by trespassing natural obstacles of sizes much larger than that of their
bodies [16].

2.3. Single leap in the presence of multiple obstacles
When a landscape with more than one obstacle is considered, the probability of success for a single leap
estimated in the previous subsection must be suitably modified. We assume that the obstacles are
distributed uniformly and independently, with a certain linear number density ν. To be considered
successful, a single leap must overcome all the obstacles present within the leap range xR. The number
of obstacles within an interval of width xR is distributed according to a Poisson distribution

pk ¼ gk

k!
e�g, ð2:5Þ

where γ = νxR is the average number of obstacles encountered during a leap. If there is exactly one
obstacle within the leap range, the probability Ps,1 of overcoming it is given by equation (2.3), with
λ = 1/xR, namely

Ps,1 ¼ 1
xR

ðxR
0

ðyðxÞ
0

rðhÞdh
 !

dx: ð2:6Þ

If there are k independent obstacles within the leap range, the probability Ps,k to jump over all of them
is thus

Ps,k ¼ Pk
s,1: ð2:7Þ

Therefore, the overall probability to overcome all the obstacles encountered in a single jump is

Ps ¼
Xþ1

k¼0

pk Ps,k

¼ exp [g(Ps,1 � 1)]: ð2:8Þ



hmax

hmax

Xend L

LXend

(a)

(b)

Figure 2. Multiple leaps in presence of many obstacles. The blue line represents a generic trajectory. (a) Successful case where all
the obstacles are overpassed. (b) Failed case where a crash has occurred against the fifth obstacle.
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2.4. Multiple leaps in the presence of multiple obstacles
We finally consider the case of an escape run where a certain escape length L has to be covered with
multiple leaps, while avoiding all the obstacles present along the way. We assume that the animal
adopts an open-loop strategy not requiring any sensory feedback, where every leap has the same
take-off angle θ and starts at the endpoint of the previous one. These subsequent hardwired identical
leaps are repeated until the distance L is covered.

In the presence of multiple obstacles and multiple leaps, a new definition of success should be
adopted. To guarantee the survival of the animal, it is natural to define as successful the case where
no obstacle is hit during the entire path (figure 2).

The whole escape path consists of a sequence of m ¼ dL=xRe identical leaps. For the sake of simplicity,
in the following we will treat L/xR as an integer, the error introduced by this approximation becoming
negligibly small in the limit L≫ xM.

Since the obstacles are distributed uniformly and independently along the path, the success of
different leaps is independent. The global success probability Pe of the escape can be then calculated
as the success probability for a single leap given by equation (2.8) raised to the number of leaps m:

Pe ¼ Pm
s

¼ [exp [g(Ps,1 � 1)]]m

¼ exp [n(Ps,1 � 1)]: ð2:9Þ
In the last equality, we have introduced the mean number of obstacles n = γm = νL encountered during the
escape.
3. Pronking and bounding
The survival of an animal during a successful escape run requires both overpassing all the obstacles
encountered along the path and moving at the maximum possible speed to avoid being reached by a
predator. Jumping with a take-off angle of 90� minimizes the probability of hitting an obstacle, but
this is achieved at the expense of the fact that the animal does not move horizontally, Although this
strategy allows the animal to maximize the number of overpassed obstacles, it leads to the immediate
capture of the prey. Conversely, a take-off angle of 0� allows it to move horizontally at the maximum
horizontal speed vx = v0, with the disadvantage that all the obstacles are hit during the run. Therefore,
both these two survival strategies are completely ineffective, because they maximize only one of the
two key requirements for a successful escape run, while simultaneously minimizing the other.
Following these considerations, a suitable figure of merit (FoM) to maximize the probability of
survival during an escape run is represented by the product between the global success probability Pe
and the horizontal component of the velocity vx = v0 cos (θ):

FoM ; vx Pe: ð3:1Þ
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In the following, we will investigate how the optimal leap angle maximizing the above-defined FoM
depends on the density of the obstacles and on the probability distribution of their height.
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.10:230587
3.1. Uniform distribution of the height of obstacles
We first consider the simple case where the probability density function of the height of obstacles is
uniform in the range [0, hmax]. In the following calculations, we consider hmax > yM.

The probability Ps,1 of overcoming a single obstacle in a single leap has a simple analytic form

Ps,1 ¼ 2
3
yM
hmax

sin2ðuÞ, ð3:2Þ

and the FoM reads

FoM ¼ v0 cosðuÞ exp n
2
3

yM
hmax

sin2ðuÞ � 1
� �� �

: ð3:3Þ

The FoM has an absolute maximum at the take-off angle

u ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
hmax

nyM

s !
, ð3:4Þ

when the average number of obstacles encountered during a flee is larger than a critical threshold

n � nc with nc ¼ 3
4
hmax

yM
ð3:5Þ

while θ = 0 for n < nc.
Equations (3.5) and (3.4) show that the optimal leap angle is a function of the average number of

obstacles n and the normalized maximum height of obstacles hmax/yM. When one of these two
parameters is close to zero, the best strategy for the escape is to adopt a leap angle of zero degrees,
which allows the animal to trespass all the obstacles (figure 3a). Fixing the average number of
obstacles n and investigating the dependence of θ from hmax/yM shows that as soon as the maximum
height is slightly increased, the optimal leap angle exhibits a sharp increase, due to the divergence of
its derivative in hmax/yM = 0 (figure 3b). For each value of n, there is a value for the normalized
maximum height hmax

yM
smaller than 1 at which θ reaches a maximum: for higher values of hmax/yM,

obstacles can be so high that increasing the angle in order to try to overpass them is not convenient.
Keeping the maximum height of obstacles fixed, a continuous transition in the optimal take-off angle

θ occurs when the average number of obstacles crosses the threshold value nc (figure 3c). If n < nc, the
optimal take-off velocity is directed horizontally, corresponding to running, trotting or galloping,
while when the average number of obstacles exceeds the threshold, a strategy based on a sequence of
jumps with a non-zero take-off angle, akin to pronking or bounding, becomes preferable.

We note that nc assumes its minimum value nc = 3/4 when the maximum height hmax of an obstacle
matches the maximum height yM reached in a vertical leap. Considering larger values of hmax shifts the
threshold toward an increasingly larger average number of obstacles.

Above the threshold, the optimal take-off angle displays a sharp increase as a function of n,
corresponding to a power law with an exponent 1/2. This can be appreciated by introducing the
reduced variable e ; ðn� ncÞ=nc, in terms of which the optimal take-off angle exhibits a power-law
behaviour with exponent 1/2 (figure 3d ).

u ¼ arccos (1þ e)�1=2 � e1=2: ð3:6Þ
3.2. Exponential distribution of the height of obstacles
We now consider the case where the probability density function for the heights of the obstacles is
exponential and characterized by the obstacle height h� at 1/e:

rðhÞ ¼ 1
h�

e�ðh=h�Þ: ð3:7Þ
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Figure 3. Optimal escape strategy for a uniform distribution of the obstacle height. (a) Optimal leap angle as a function of the average
number n of encountered obstacles and the normalized maximum height of the obstacles hmax/yM. (b) Angle that maximizes the FoM
plotted as a function of the normalized obstacle height hmax/yM for different values of the average number n of encountered obstacles
(vertical dashed lines in panel (a)). (c) Angle that maximizes the FoM plotted as a function of the average number n of encountered
obstacles for different values of the normalized obstacle height hmax/yM (horizontal dashed lines in panel (a)) (d ) Same as (c), where
the curves are plotted as a function of the scaled variable n/nc, where nc is the critical number of obstacles given in equation (3.5). Inset:
power-law behaviour of the optimal leap angle as a function of the reduced number of obstacles e.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230587
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 N

ov
em

be
r 

20
23

 

In this case, the expression of Ps,1 is quite intricate, and a closed-form expression for the optimal leap
angle cannot be easily calculated. Nevertheless, we determined the optimal take-off angle by numerical
maximization of the FoM. We found that, in close analogy with the case considered in the previous
section, the optimal take-off angle exhibits a sharp transition as a function of the average number of
obstacles n (figure 4a). For fixed values of n, as encountered in the previous case, the angle θ has a
maximum value corresponding to a value of h�/yM smaller than 1 for each n. Differently from the
previous case, the angle θ as a function of h�/yM is differentiable everywhere but in zero. Quite
strikingly, a transition is found to occur in correspondence to the threshold value (figure 4c)

nc ¼ 3
4
h�

yM
, ð3:8Þ

bearing a remarkable formal similarity with equation (3.5), which is valid for the case of uniformly
distributed obstacles heights. The analogy with the uniform case extends also to the asymptotic
behaviour above the threshold. Indeed, as can be appreciated from figure 4d, where the optimal leap
angle is plotted as a function of the reduced variable e ; ðn� ncÞ=nc on a log–log scale, θ exhibits a
power law dependence on e with an exponent compatible with 0.5, with a prefactor that depends on
the characteristic obstacle height h�.
3.3. Peaked distribution of the height of the obstacles
Another simple case that deserves to be considered is when all the obstacles have the same fixed height ~h,
namely when the height of the obstacles follows the distribution rðhÞ ¼ dðh� ~hÞ.
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In this case, the expression of Ps,1 is

Ps,1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sin2ðuÞ
~h
yM

s
, ð3:9Þ

that leads to a FoM of the form

FoM ¼ v0 cosðuÞ exp n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

sin2ðuÞ
~h
yM

s
� 1

0
@

1
A

2
4

3
5: ð3:10Þ

The maximization of this expression with respect to θ is quite intricate, thus we computed it
numerically.

As can be appreciated from figure 5a, there is a region of parameters that gives θ = 0 as the best take-
off angle, in similarity with the two precedent cases. In the region where θ≠ 0, the angle θ increases with
both ~h=yM (figure 5b) and n (figure 5c).

For each height ~h, there is a critical number of expected obstacles n under which the best strategy
consists in running. The peculiar aspect of this result is that as n exceeds the critical value, the best
angle undergoes a discrete variation and the transition is not continuous. The pairs of parameters
where the transition occurs are plotted in figure 5d. In the presence of obstacles of height exceeding
yM (~h=yM . 1), the best strategy is θ = 0. Under this condition the obstacles, if present, are impossible
to overcome, thus the only way to maximize the FoM is to maximize the horizontal velocity.

A preliminary investigation of other distributions of obstacles has shown that a discontinuous
transition is typical of distributions for the heights of the obstacles with a peak at a non-zero height.
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Figure 5. Optimal escape strategy for a peaked distribution of the obstacle height. (a) Optimal leap angle as a function of the
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3.4. Discussion
In both the analysed cases of uniform and exponential distributions of the heights of the obstacles, a
peculiar behaviour is found: it is possible to define a critical obstacle density that depends on the
length L of the path and on a characteristic length of the distribution of the heights of the obstacles.
When the landscape is characterized by a density of obstacles lower than the critical density, the best
strategy is to move horizontally without leaping, while when the density is higher than the critical
density, the best take-off angle increases with the reduced density as a power law with exponent 0.5.
A peaked distribution of the height of the obstacles also leads to the presence of a critical number of
obstacles above which the optimal leap angle undergoes an abrupt transition to a finite non-zero
value. As a general behaviour, we have found that when the average number of obstacles is fixed and
the characteristic height of obstacles is increased above a typical threshold value, the optimal leap
angle becomes a monotonic non-increasing function (as appreciable from figures 3b, 4b and 5b). This
is a consequence of the fact that when the obstacles become too high the probability of overcoming
them becomes small. Under these conditions, the FoM is maximized by smaller optimal leap angle,
which allows it to achieve a faster velocity.

The variety of radically different distributions of obstacles investigated in our work across a wide area
of the parameter space allows us to obtain the general and robust result that a sharp transition from
running to pronking/bounding occurs irrespective of the specific features of the distribution of
obstacles. However, the density of the obstacles and the distribution of their heights are input
elements of our model and a more stringent test of its validity would require us to check whether the
distribution of obstacles in a natural environment matches the ideal ones adopted by us. Under some
circumstances, one may guess the distribution of the heights of the obstacles from prior knowledge
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about the environment, considering for example scale invariance, cut-offs, characteristic dimensions, etc.
In some cases, measuring statistical information about the landscape is however necessary. This can
happen when unknown types of obstacles (for which no prior information is available) are considered
or when the statistical properties of the obstacles change in time. A solution to the problem of the
determination of the distribution of obstacles in a real environment can be represented by the usage
of a Digital Elevation Model (DEM) of the landscape. One of the most comprehensive digital
elevation models for Earth comes from the Shuttle Radar Topography Mission [33], which gives a
quasi-world wide map of elevation with a spatial accuracy of approximately 30m and a precision on
the elevation of 16m. Similarly, the ASTER Project DEM [34] has a 99% coverage of Earth’s surface
with spatial resolution of 30m and elevation accuracy around 20m. A much more accurate DEM
comes from ALOS-PRISM projects of the Japanese Space Agency (JAXA) [35], which allowed us to
generate a DEM with resolution of 2.5 m and an accuracy on elevation of 5m. These DEM projects are
aimed at creating a global elevation map, thus data were mostly taken from satellites or spacecrafts. In
the case of small obstacles, like grass or sand and rocks, the data from such projects are not very
useful, and a most suitable way to investigate the obstacles in the environment could be the usage of
a local LiDAR technology. With LiDAR one could be able to create an accurate three-dimensional
map of the environment. From such a reconstruction, it is straightforward to extrapolate the density of
the obstacles and the distribution of their heights. Some problems may arise when the LiDAR
resolution is too large with respect to the characteristic inter-obstacle space. Moreover, if obstacles are
not perfectly vertical, LiDAR inspection may fail because higher obstacles could hide smaller ones
affecting the reconstruction of the heights distribution. A canopy of vegetation may easily drive to this
issue. Nevertheless, if one is confident that all the obstacles have approximately the same height, the
aforementioned technique can give an estimation of the unique height of the obstacles even in
the critical discussed cases (like grass in [36]) and the model described in §3c can be properly applied.

Our results could provide a possible quantitative explanation of a natural phenomenon like pronking:
when an animal wants to escape by moving from one place to another as quickly as possible and the
environment has a density of obstacles higher than a critical density, the best survival strategy for the
animal is to escape by a sequence of leaps. This model could explain the evolution of pronking/
bounding in several animal species across different continents of the world. On a broader perspective,
studies performed on the gait selection in black-backed jackals [37] and in domestic dogs [38] have
shown that the transition between gaits is largely determined by the features of the terrain. On
rugged soil frequent gait switches are required to adapt to the features of the terrain, but trot is used
more frequently, thus suggesting that it represents a stable gait choice for challenging terrain, even
when the substrate is covered by long grass and its features are largely unpredictable. We speculate
that the adoption of a gait where at least two simultaneous footfall occur could have a common
ground in determining the ability of an animal in negotiating a rugged terrain. Indeed, trot has two
synchronous footfalls, where pronking and bounding have four or two, respectively. Therefore, the
fact that pronking/bounding are useful to leap over obstacles could perhaps explain the shifts in gait
reported in jackals and dogs, where obstacle terrain leads to shifts to gaits with simultaneous footfalls
to enable better leaping and stability.

Beyond their fundamental relevance as a possible explanation for the pronking and bounding
behaviour during an escape run, our results have applicative implications for robotic exploration.
Robots designers look for bioinspiration in the animal world to realize robots with stable dynamic
motions [17,20,24,39]. Developing control methods able to give legged robots the ability to move with
agility and versatile gaits, such as real animals do, is still one of the grand challenges for robot
engineers. It has been recognized that quadrupeds are the animals that run faster [21] and are able to
move steadily on rough ground [24], therefore there is a special interest in reproducing their gaits.
A great effort is devoted to optimizing the leg control in order to reproduce a rich variety of motions
[29,32,40]. Although for our model bounding can be considered almost equivalent to pronking, this is
not exactly the case for robot design. In fact among all the possible gaits, pronking is extremely
promising as it allows minimizing the number of control parameters thanks to the synchronization of
the extension of the four legs [18,25,26]. Conversely, the bounding gait encompasses two extra phases
where only a single set of legs maintains contact with the ground [30]. Moreover, in pronking gait,
pitch and roll of the animal body are minimal and therefore the model of a pronking robot does not
need a control of rigid body effects, at variance with the case of a robot moving with a bounding gait
[27,39]. Robots used for exploration need to be able to move in uneven terrain, a recognized specialty
of quadrupeds, nevertheless only recently experiments using legged robots have started to test their
performances on irregular environments [24,25,28,31,32], and to simulate their performances under
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reduced gravity conditions of interest for planetary exploration [41]. Most research works analysed only
the motion on flat or slightly uneven terrain where the performances of wheeled rover robots are
definitely superior [29]. In general, the robot gaits are evaluated on the basis of their stability,
velocity and efficiency compared to the complexity of control and adaptability of the control methods.
Tests of the ability of robots to overpass obstacles as a function of different gaits are very uncommon,
although this approach was used for some studies on insects inspired robots [31,42]. Pierre &
Bergbreiter [31] perform various experiments to test the performances of a tiny legged robot (less than
2 g in weight) in a rough artificial environment populated by randomly distributed obstacles with
heights distributed normally. The robots’ legs contain magnets and the motion actuation is obtained
through an external magnetic field. Pronking proves to be the most effective gait to maximize the
percentage of horizontal terrain explored by the robot before being stopped by an obstacle. However,
when the root mean square roughness of the terrain is increased, pronking appears to be less effective
than bounding, which results in it being the most effective gait. These results seem to indicate a
different performance of the two gaits, not possible to predict with our model. The outcomes of this
work, however, are very preliminary and would probably need to be tested in a wider range of
experimental environments.

The approach proposed in our study is to connect the best leaping strategies with the statistical
properties of the landscape. These relations have straightforward applications in the definition of the
most suitable gait for legged robots that explore a rough terrain. When a closed-loop analysis of the
landscape and the elaboration of a deterministic best strategy are excessively computationally
intensive, considerations like those presented in this paper can be applied to obtain a statistically
driven best open-loop strategy.
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