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Abstract. An experimental analysis is proposed concerning the use of
physiological signals, specifically remote Photoplethysmography (rPPG),
as a potential means for detecting Deepfakes (DF). The study investi-
gates the effects of different variables, such as video compression and
face swap quality, on rPPG information extracted from both original
and forged videos. The experiments aim to understand the impact of
face forgery procedures on remotely-estimated cardiac information, how
this effect interacts with other variables, and how rPPG-based DF detec-
tion accuracy is affected by these quantities. Preliminary results suggest
that cardiac information in some cases (e.g. uncompressed videos) may
have a limited role in discriminating real videos from forged ones, but the
effects of other physiological signals cannot be discounted. Surprisingly,
heart rate related frequencies appear to deliver a significant contribution
to the DF detection task in compressed videos.

Keywords: Deepfake detection · rPPG · Video forensics · Physiological
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1 Introduction

Fake videos generated through deep learning techniques (Deepfakes [1], DF) blur
the line between truth and deception (surmising, for simplicity, that such a line
can be drawn). This very fact might lead to a responsible use in the service of
many realms (entertainment, education [2], advertising, or privacy protection
via de-identification [3]). However, the major concern lies in that DFs might
pave the way to the murky realm of fake identity creation for unethical and
malicious applications, posing a variety of threats to individuals (e.g. fake porn),
organizations (e.g. blackmail to managers to stop sharing their compromising
DFs), and politicians (e.g. fake news to sabotage government leaders) [4].

It is no surprise that, since the paradigmatic generation of a synthesized
version of Obama [5] in 2017, increasing efforts have been devoted to develop
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DF detection (DFD) methods that can differentiate between real and forged
videos [6, 7]. Yet, DFD raises subtle issues that, in spite of the flourishing of
published methods achieving good metrics performance on public datasets, have
been hitherto most often neglected, an attitude that can negatively impinge on
DFD generalization from the lab to real-world contexts. A chief concern of this
note is to make a step forward in unveiling some of such issues.

DFD methods might be coarsely grouped according to the kind of artifacts
that a DF technique can introduce into the forged video (but see [4]), from spatial
artifacts and disarranged temporal coherence to anomalies in human behaviours
and semantic inconsistencies (such as those between visemes and phonemes).

A class of methods that have recently gained currency is that relying on
virtual measurements of physiological data. The idea is simple and straightfor-
ward: DF techniques are likely to disrupt physiological signals (such as heart
rate, blood flow, and breathing) that can be detected in a contactless way from
the RGB video stream. One such case is represented by measurements (e.g.,
heart rate, HR, and respiration rhythm, RR) derived from the Blood Volume
Pulse (BVP) signal estimated via remote photoplethysmography (rPPG, [8]).

In this note we investigate rPPG-based DFD in order to eventually gauge the
effects of different variables (e.g. video compression, rPPG method, etc.) on the
rPPG information extracted from both original and forged videos in a controlled
experimental setting. Specifically, we address the following research questions:

1. (RQ1 ) How a face forgery procedure impinges the remotely-estimated car-
diac information?

2. (RQ2 ) How such effect interacts with other factors, such as video compres-
sion and DF quality?

3. (RQ3 ) How rPPG-based DF detection accuracy is overall affected by the
above factors?

Preliminary results so far achieved suggest that, in discriminating real videos
from forged ones, cardiac information displays a nuanced role but depending on
a number of factors, while effects of physiological signals other than the cardiac
one embedded within the BVP cannot be completely ruled out. Under such
circumstances, the application of rPPG-based DFD in real-world contexts should
be carefully designed and weighed up.

2 Background and Related Works

A variety of techniques have been developed to efficiently and effectively estimate
vital signs relying solely on standard cameras [8–10]. DF detection techniques
exploiting physiological information rely on the assumption that face manipula-
tion would produce a (partial) corruption of such information, thus introducing
physiological artifacts. Several methods relying on remotely estimated cardiac
information have proven effective in DFD, yet, to the best of our knowledge, an
analysis of the determinants of such effectiveness is still missing. Notoriously,
rPPG approaches are fraught with hurdles, requiring specific conditions to be
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met, one among many, the availability of uncompressed (or lightly compressed)
videos [11]. Interestingly enough, remarkable DFD results have been achieved
even on heavily compressed datasets using rPPG information.

DeepRythm [12], employs motion-magnified spatial-temporal maps to high-
light chrominance spatio-temporal signals and a dual-spatial-temporal atten-
tion network to reduce interference. Another approach, described in [13], uses
a two-stage network to identify rhythmic patterns in PPG signals that persist
in deepfakes. DeepFakesonPhys [14] relies on a convolutional attention network
composed of two parallel CNNs to extract and combine spatio-temporal infor-
mation from videos. FakeCatcher method [15] exploits an SVM to train on 126-
dimensional feature vectors computed from rPPG-derived signals extracted from
three facial regions of interest by two rPPG methods. To improve performance,
a CNN classifier is trained on PPG maps. Similarly, in [16] the authors use PPG
maps and show that various manipulation techniques produce distinct patterns
of heartbeats. In [17] a simple and explainable approach is proposed, which
relies on gauging both intra-patch complexity measures and inter-patch coher-
ence of rPPG signals. In [18], Spatial-Temporal Filtering Network (STFNet) is
considered for rPPG filtering together with a Spatial-Temporal Interaction Net-
work (STINet) accounting for the interaction of PPG signals. More recently, a
Multi-scale Spatial–Temporal PPG map has been used to exploit cardiac signals
extracted from multiple facial regions [19]. In order to capture both spatial and
temporal inconsistencies, the authors laid down a two-stage network consisting of
a Mask-Guided Local Attention module together with a Temporal Transformer.

3 Material and Methods

Over the last few years a number of benchmark datasets have been proposed with
the aim of scoring different DF detection approaches (e.g. [20–23]). Typically,
these benchmarks are built by crawling YouTube videos and subsequently adopt-
ing DF techniques to swap identities, reenact faces or manipulate attributes.
Clearly, these datasets have been conceived for direct methods comparison and
not to understand the effects of face forgery techniques on rPPG signals, which
is the problem we are addressing here. To this end, a physiological ground truth
is mandatory to perform appropriate comparisons. Moreover, albeit some bench-
marks provide a distinction between high quality and low quality videos, uncom-
pressed video is not in general available for the task of DF detection. Under such
circumstances, to lay down a controlled setup, we opted to build our own artifi-
cially manipulated dataset (UBFC1-forged Dataset, UBFC1-F) as described in
the following.

3.1 The UBFC1-forged Dataset

UBFC1-F is constructed from the publicly available UBFC1 dataset [24]. The
latter is typically employed to assess the quality of rPPG methods. It is composed
of 8 videos (about 16500 frames) recorded using a low-cost webcam (Logitech
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C920 HD Pro) at a resolution of 640x480 pxl in uncompressed 8-bit RGB for-
mat, with a frame rate of 30fps. The ground truth PPG data, including the
PPG waveform and heart rates, were obtained using a CMS50E transmissive
pulse oximeter. The recordings were made while the subjects sat in front of
the camera, positioned approximately 1 meter away, with their face visible. The
participants were instructed to remain motionless; even so, some of the recorded
videos exhibit noticeable movement.

UBFC1-F dataset was generated from UBFC1 as follows. The freely available
FaceSwap tool3 has been employed in order to perform face forgery. This method
replaces a face in a target sequence with one observed in a source sequence using
a simple method based on neural image style transfer [25].

Each subject identity was swapped with every other individual and for each
video a variant with different compression rates: 1) No Compression, 2) High
Compression. Compressed videos were obtained via H.264 encoding with a Con-
stant Rate Factor (CRF) set to 30 (High Compression).

Moreover, in order to simulate 1) Low Quality and 2) High Quality forged
videos, training iterations of the FaceSwap model were stopped to 25000 in the
former case and brought to convergence in the latter.

3.2 Physiological estimation and Analysis

For each video in the UBFC1-F, either real of forged, the Blood Volume Pulse
(BVP) signal is estimated from displayed faces via rPPG by exploiting the pyVHR
framework4 [9, 10]. pyVHR implements well established pipelines allowing to de-
rive cardiac information using either classic signal processing or learning-based
approaches. Here, the classic pipeline is adopted due to its simplicity and higher
level of explainability. Though Deep Learning based approaches exhibit superior
performance on many benchmark datasets, their generalization abilities are still
subject to some controversy [9, 10,26].

The RGB videos are used to estimate hidden physiological information, start-
ing with the detection of the face of a possibly manipulated subject, and the auto-
matic tracking of a set of patches on the face around the cheeks area (which typi-
cally contains pixels belonging to the swapping area). For each of the P patches,
the color intensities of the pixels within it at time t, denoted by {pji (t)}

Ni
j=1

(i = 1, . . . , P ), are averaged to create P RGB traces. Let qi(t) be the RGB trace
obtained from the i-th patch of length Ni:

qi(t) =
1

Ni

Ni∑
j=1

pji (t), i = 1, . . . , P. (1)

These traces are then split intoK overlapping time-windows, qki (t) = qi(t)w (t− kτFs),
k = 0, . . . ,K − 1, Fs being the video frame rate, τ < 1 the fraction of overlap,
and w a rectangular window. For each patch i and at each time frame k, the

3 https://github.com/deepfakes/faceswap
4 https://github.com/phuselab/pyVHR

https://github.com/deepfakes/faceswap
https://github.com/phuselab/pyVHR
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BVP signal is estimated using either the GREEN [27] or the POS [28] method.
Denote M := {GREEN,POS}; the BVP estimate for the i-th patch and the
k-th time frame is obtained as:

xk
i (t) = M

[
qki (t)

]
. (2)

SNR Analysis In order to address (RQ1 ) and (RQ2 ), a Signal-to-Noise Ratio
(SNR) analysis is performed. The goal is to assess to what extent physiological
information in forged videos is either disrupted or maintained. At the same time,
we gauge the effects of both video compression and forgery method’s quality.

The SNR can be operationalised according to [29]; namely, the ratio of the
power around the reference HR frequency (i.e., the ground truth HR frequency)
plus the first harmonic of the estimated pulse-signal and the remaining power
contained in the spectrum of the estimated BVP:

SNR =
1

K

∑
k

10 log10

( ∑
v

(
Uk(v)Sk(v)

)2∑
v (1− Uk(v))Sk(v))

2

)
, (3)

where Sk(v) is the power spectral density of the estimated BVP in the k-th time
window and Uk(v) is a binary mask that selects the power contained within ±12
BPM around the reference HR and its first harmonic. The SNR is computed for
each BVP signal estimated in each video of the UBFC1-F dataset in order to
highlight differences in real vs. forged identities, uncompressed vs. compressed
videos and Low Quality vs. High Quality scenarios. Results are visualised in
Figure 1.
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Fig. 1: SNR values obtained on the rPPG estimates on original and swapped
videos using the GREEN (a) and POS (b) methods with different iterations of
the FaceSwap DF approach.
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Quantitatively, statistical significance is gauged via the BEST statistical anal-
ysis (a Bayesian version of the t-Test) [30]; results are presented in Figure 2,
where the posterior probability distributions of the difference of means between
Signal-to-Noise Ratio (SNR) values obtained from original and swapped videos
of the UBFC1-F dataset are shown. The results are demonstrated for both the
GREEN and POS rPPG methods and for scenarios where video compression is
applied or not.

0.0 0.5 1.0 1.5 2.0

1.2 1.9

98% HDI

mean=1.5

difference of means

(a) GREEN, No Compression

0.2 0.0 0.2
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(b) GREEN , High compression
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(c) POS, No Compression
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difference of means

(d) POS, High compression

Fig. 2: Result of the BEST test for statistical comparison of two groups. Pos-
terior probability distributions of the difference of means between SNR values
obtained from original and swapped videos of the UBFC1-F dataset in case video
compression is applied or not (for both GREEN and POS rPPG methods). If
the 0 difference value falls outside the highest density interval (98% HDI) of
the posterior, it can be deemed an implausible value (the two distributions can
be considered distinct). The test reveals significant differences in uncompressed
videos ((a) and (c)) and non-significant differences in compressed ones ((a) and
(d)). Figure shows results for the High Quality swap case; similar results are
obtained for the Low Quality case.
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3.3 DeepFake Detection analysis

As to (RQ3 ), the BVP signals estimated on the UBFC1-F dataset are employed
to gauge the effect of the same variables considered above on the DF classification
accuracy. To this end, the DF detection method proposed in [17] and depicted
at a glance in Figure 3 is exploited. Two sets of features are used as predictors
of the presence of faking interventions:

– Intra-Patch BVP Complexity Measures: A set of features quantifying the
entropy rate of BVP signals

– Inter-Patch BVP Coherence Measures: A set of features measuring the de-
gree of consistency between the BVP estimates across the patches.

Feature extraction is followed by an SVM binary classifier for the final DFD
step.

Fig. 3: Overview of the DF detection approach presented in [17]
adapted for the analyses presented here

As with the SNR analysis we quantify the effect of video compression and
FaceSwap level of convergence (method quality) on the DF detection task. In
addition, to gauge the role played by heart-rate (HR) related information, we
exploit two different filters (ftype) applied on the Power Spectral Density (PSD)
of the BVP signal:

1. Band-stop: A band-stop filter removing the HR-related frequencies (0.75 -
4.0 Hz)

2. Bandpass: A band-stop filter keeping only the HR related frequencies (0.75
- 4.0 Hz)

The DFD accuracy levels achieved on the UBFC1-F dataset by varying the
above factors are reported in Figure 4.

Further statistical hypothesis testing to quantify significant differences be-
tween accuracy levels is performed according to [31]. We evaluate the potential
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Fig. 4: Accuracy levels for DF detection using the GREEN (a) and POS (b)
rPPG methods with varying compression rates, filter types and FaceSwap’s swap
quality.

improvement of one scenario over another by utilizing the Bayesian Sign-Rank
Test [32], a Bayesian non-parametric method that extends the Wilcoxon signed-
rank test.

Figure 5 depicts the results of the analysis by reporting the posterior samples
for the Bayesian Sign-Rank Test on the simplex. Each vertex of the triangle
represents the case where a scenario is either more probable to yield higher DF
detection accuracy w.r.t the other or equivalent (probability over the Region of
Practical Equivalence, P (ROPE)).

4 Discussion

SNR analysis. This analysis clearly shows that on uncompressed videos dis-
playing real identities, physiological information is baldly present; this is partic-
ularly evident when using the POS rPPG method, which notoriously exhibits
more robust performances if compared to the baseline GREEN method (cfr. Fig-
ure 1(b)). Interestingly enough, when FaceSwap is applied, the SNR drastically
drops, albeit betraying some residual original cardiac information (especially
when the swapping method is trained to convergence). Notably, on compressed
videos the SNR reveals weak presence of cardiac information with non signifi-
cant differences between real and forged videos either using the GREEN or POS
rPPG method.

Indeed, from a statistical standpoint, BEST analysis (Fig. 2) shows that in
the case of uncompressed videos, significant differences are observed between the
SNR values of original and forged videos (Fig. 3, panels (a) and (c)), whereas
non-significant differences are observed in compressed videos (panels (b) and
(d)). Presented results refer to the ”High Quality swap” case, but the same
conclusion can be drawn for the ”Low Quality” scenario.
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(a) GREEN (No compression) (b) GREEN (High compression)

(c) POS (No compression) (d) POS (High compression)

Fig. 5: Posterior samples for the Bayesian Sign-Rank Test on the simplex compar-
ing the distributions of accuracy levels when choosing a band-stop vs. bandpass
filtering of a BVP signal estimated using either GREEN or POS rPPG methods.
Each plot shows the probability for a particular scenario to yield higher accuracy
if compared with another.

DFD analysis. Results reported in Figure 4(a) show that the rPPG signals
estimated by the GREEN method in general yield the highest accuracy levels
on uncompressed videos. This result is rather surprising, considering that, on
average, GREEN’s signals exhibited negative SNR (cfr. Figure 1(a)), which in
principle should result in poor capabilities of capturing BVP information. Video
compression, significantly cuts down the DFD performance of the method. How-
ever, at high compression, cardiac information (selected via bandpass filtering)
yields higher DFD accuracy than that obtain from other PSD bands (band-stop
filtering) when FaceSwap simulates a Low Quality swapper, and comparable
accuracy for High Quality swapping. Such results are statistically confirmed
via the Bayesian Sign-Rank Test (Fig. 5, panels (a) and (b)). Further, when
the POS method is considered, such trend becomes crystal clear, and the no
compression/high compression factor swaps the roles played by information ob-
tained after bandpass/band-stop filtering to achieve DFD accuracy (Fig. 3(b)
and Fig. 5(c) and (d))

Overall, results can be summarized as follows: at zero compression, if we
consider the classification obtained from band-stop filtered vs. bandpass filtered
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rPPG signals, the former is significantly better for all methods. However, with
compressed videos results are reversed: when considering the classification ac-
curacy obtained from band-stop filtered vs. bandpass filtered rPPG signals, the
latter is generally better for both rPPG methods (GREEN and POS). Therefore,
prima facie, it can be surmised that starting from uncompressed videos, the DF
method introduces artifacts that are better captured by the PSD bands of the
BVP that do not strictly involve cardiac information. However, other physiolog-
ical signals may be still present in the filtered BVPs and hence eventually be
recruited for the classification. As a matter of fact, BVP signals carry a variety
of vital signs (e.g. respiratory signals, blood oxygen levels, blood pressure etc.)
that can be extracted (see, for instance, [8, 26]). Video compression, though,
seems to smooth out these artifacts that no longer provide enough information,
while the HR-related frequency band ”withstand” compression as opposed to
other frequency bands, in spite of the low SNR. This is an interesting result
because, if we look at the SNR of the estimated BVPs (Figure 1), which is sig-
nificantly different between the original (high SNR) and fake (low SNR) cases
at zero compression, it becomes negative with no significant differences between
original and fake videos in compressed videos (cfr. Figure 2). In other words,
under conditions of high compression, the noise is higher than the signal, but
the signal, markedly the HR-related component, is still present and is likely to
be used.

5 Conclusions

The effective role played by HR information in DFD is the result of complex in-
teractions between the original quality of the video stream and its compression,
the power of the DF method, the quality of the estimated signal and the method
adopted for BVP estimation. Such interactions can lead to counter-intuitive re-
sults. Although the current study is a simple simulation-based approach and has
potential limitations as it solely relies on the FaceSwap technique to generate
deepfakes, it provides insights into how different variables can impact remotely
estimated BVP signals. It’s worth remarking that, the reported classification
results depend on the specific DF detection method [17] employed here; the
dependence of the analysed quantities on other DF methods and classification
approaches will be addressed in a future research. Preliminary results in such
direction (not reported here) show that, in the outlined scenario, different BVP
estimation methods can also lead to different outcomes over different datasets,
thus impinging on DFD generalization when a cross-dataset evaluation is per-
formed. To sum up, the obtained results suggest that the role of cardiac infor-
mation in distinguishing genuine videos from manipulated ones may be limited
in certain situations, such as with uncompressed videos. However, the impact
of other physiological signals should not be disregarded. Interestingly, though,
frequencies associated with heart rate seem to play a significant role in detecting
manipulated videos, particularly in compressed formats.
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All in all, in spite of the promising results reported “in-the-lab” condition,
HR information for DFD should be handled with care when applications “in-
the-wild” are targeted.
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