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Introduction  

SARS-CoV-2 infection in children and adolescents has different consequences from those 

observed in adults. In most cases they develop mild symptoms, but a small number of 

infected subjects develop severe symptoms, more frequently in the presence of 

comorbidities such as diabetes, obesity, or cardiovascular diseases. In less than 1% of 

children who contract SARS-CoV-2 a hyper-inflammation state has been observed, both 

during the infection and approximately 4 to 6 weeks afterwards.  

In 2020, the World Health Organization (WHO) defined this hyper-inflammation state as 

the Multisystem Inflammatory Syndrome in Children (MIS-C). This disease results in 

multiple organ failure, with the involvement of gastrointestinal, cardiovascular, 

haematological, cutaneous, and respiratory systems. The syndrome is post-infectious 

rather than related to the acute phase of the infection. Thus, it has been hypothesized that 

it is a delayed immunological phenomenon associated with the hyperinflammatory phase 

following symptomatic or asymptomatic SARS-CoV-2 infection9.  

The infection appears to trigger activation of macrophages followed by stimulation of T-

helper cells. This leads to the release of cytokines, stimulation of macrophages, neutrophils, 

and monocytes. B-cells and plasma cells are also activated, with the production of 

antibodies leading to a hyperimmune response. This immune deregulation is associated 

with MIS-C syndrome in these children11.  

The blood fatty acid profile in children affected by MIS-C was altered compared to that of 

healthy children. AA (20:4 n-6), LA (18:2 n-6), and DHA (22:6 n-3), were 38%, 35% and 38% 

lower, respectively. In contrast, the levels of ALA (18:3 n-3) and EPA (20:5 n-3), were in 

line with those found in the literature 133. This alteration is the possible result of an 

increased metabolism of FA that leads to the formation of lipid mediators that participate 

in the hyperinflammatory state observed. The lower levels of AA in children with MIS-C 

seem to be the result of its marked release from accumulation in phospholipids followed 

by its conversion into pro-inflammatory lipid mediators133. In fact, oxygenated metabolites 

derived from ω-6 may participate in both the propagation and resolution of the 
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inflammatory response, but they exert mainly potent pro-inflammatory and pro-

thrombotic activities134.  

In contrast, from ω-3 PUFA, specialized pro-resolving mediators (SMPs) can be produced. 

SMPs are metabolites derived from reactions mediated by lipoxygenases starting from 

DHA and EPA, and essential ω-3 PUFAs. SMPs are powerful anti-inflammatory agents, so 

they can promote the physiological resolution of the inflammatory process74,128. In 2021 a 

pilot study with 100 adult patients positive for SARS-CoV-2 was conducted to test the 

hypothesis that EPA and DHA levels – expressed as Omega-3-Index (O3I) – were inversely 

associated with the risk of death. The results showed that patients with an O3I of 5.7 % or 

higher had an approximately 75% lower risk of death than those with a lower O3I value.  

This difference in mortality risk is not statistically significant, however, it is a strong trend 

suggesting the existence of a relationship 104.  These findings support the idea that EPA and 

DHA have anti-inflammatory properties that could contribute to reducing morbidity and 

mortality in SARS-CoV-2 infection. As the above study is currently the only one in the 

literature regarding a possible correlation between ω-3 fatty acid levels and the outcome 

of COVID-19 disease caused by SARS-CoV-2, we decided to investigate this possible 

correlation in children. 

Aim  

We aimed to assess the fatty acid profile in whole blood in 51 children diagnosed with MIS-

C admitted to Vittore Buzzi Hospital in Milan (Italy), to calculate the O3I, and to assess its 

possible correlation with days of hospitalisation and whether the children were admitted 

to the paediatric intensive care unit (PICU). 

Subjects and methods  

A group of 51 children (2-18 years old) with MIS-C, as defined according to the CDC 

classification10, were enrolled at the Paediatric Department of the Vittore Buzzi Children’s 

Hospital in Milan, Italy, from 21 December 2020 to 31 March 2022 .For all patients, a 
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clinical and biochemical assessment was performed on admission. In addition, 

anthropometric measurements and the drug therapy of the children were also reported.  

The study was conducted according to the guidelines of the Declaration of Helsinki and 

approved by the Institutional Review Board of the hospital (protocol number 

2021/ST/004). Children’s caregivers gave their written consent for inclusion after being 

informed about the nature of the study. 

Fatty Acid Analysis 

A few days after admission, a drop of blood was collected on a card embedded with 

butylated hydroxy toluene (BHT) as an antioxidant, and stored in a refrigerator until 

analysis.  

The fatty acids (FA) profile was evaluated after direct transmethylation. FA methyl esters 

were analysed by gas chromatography using a GC-2100 (Shimadzu Italia S.r.l., Milan, Italy) 

equipped with a 15 m capillary column (DBB Agilent), PTV injector and FID detection, as 

reported previously 135,136. A total of 22 FA were considered and reported as relative 

percentages. FA classes, i.e. total saturated FA (SAT), monounsaturated FA (MUFA) and 

PUFA and FA series (ω-6 and ω-3) were also reported. In addition, the O3I was calculated 

in accordance with Stark et al. applying the suggested equation, O3I = 1.1 * (EPA+DHA in 

WB) + 0.65, to convert EPA and DHA sum from whole blood to O3I in red blood cells 137. 

Statistical Analysis 

The statistical analyses were performed using IBM SPSS statistics v. 18.01 for non-

parametric tests (Spearman correlation coefficient for FA versus days of hospitalization 

and Kruskal-Wallis test to compare different groups). A chi-squared test was administered 

for possible associations between O3I and categorical variables. The analyses and 

differences were considered significant for p<0.05. 

Results 
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Table 3 summarizes the characteristics of the sample. The mean age of the subjects (n=51) 

was 8.6±3.7 years, and 74.5% of them were males. Hospitalization ranged from 6 to 27 days, 

with a mean of 14 days. The subjects were also divided in two groups: the first included 

those children who had been admitted for a few days in the paediatric intensive care unit 

(PICU), and the second, children who had not been in the PICU (No PICU). No significant 

differences were found between these groups in terms of age and days of hospital stay. 

Table 3. Characteristics of the sample  

 All subjects n=51 PICU n=30 No PICU n=21 

Sex-male n, % 38 (74.5%) 24 (80%) 14 (67%) 

Age y mean±SD, 

(min-max) 

8.6±3.7 (3-17) 9.2±4.1 (3-17) 7.8±2.9 (3-14) 

Days in H mean±SD, 

(min-max) 

14.1±4.2 (6-27) 14.7±4.6 (6-27) 13.3±3.5 (10-26) 

ICU, intensive care unit 

The levels of ω-3 PUFAs are reported in Table 4. A comparison of PICU group with No 

PICU group showed no significant differences concerning FA levels, nor for the O3I which 

was 2.27% in ICU versus 2.34% in No ICU. The mean value of O3I in all subjects was 

2.30±0.51. As these patients were diagnosed with MIS-C and had an altered FA profile with 

respect to the control subjects of the same age. O3I values in the control groups were 

searched for in the literature.  

Table 4. Whole blood ω-3 fatty acid levels, expressed as relative percentages, in patients 

admitted or not to the intensive care unit. 

Fatty acids All subjects n=51 PICU n=30 No PICU n=21 

ALA 0.20±0.09 0.21±0.09 0.19±0.09 

EPA 0.38±0.09 0.39±0.10 0.36±0.08 
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DPA 0.44±0.16 0.42±0.12 0.47±0.21 

DHA 1.12±0.46 1.08±0.47 1.17±0.45 

Total ω3 2.14±0.63 2.11±0.58 2.19±0.72 

O3I 2.30±0.51 2.27±0.49 2.34±0.55 

The values reported are the mean ± standard deviation (SD). ALA, alpha linolenic acid; EPA, 

eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; O3I (calculated as reported 

in the Methods section); PICU, paediatric intensive care unit. 

Table 5 shows articles in which the FA profile of healthy children was reported 98,138–147. The 

analyses were conducted in different specimens (i.e. whole blood, red blood count, plasma) 

and thus when possible, the O3I was calculated as reported in the Methods. Figure 16 

shows the O3I values from all the studies mentioned, from the Italian literature alone and 

from the current study with significant differences.  

Table 5. O3I in healthy children and adolescents, based on literature data. 

Author, year of 

publication 

Country Age in years Specimen O3I 

Ryan AS, 2008 USA 4 WB 2.08 

Burrows T, 2011 Australia 5-12  RBC 5.00 

Risé P, 2013 Italy 2-9 WB 2.44 

Van der Wurff, 2016 Netherlands 13-18 WB 3.92 

Crippa A, 2018 Italy 7-14  WB 4.02 

Al-Ghannami SS, 2018 Oman 9-10  RBC 4.10 

Crippa A, 2019 Italy 7-14  WB 3.39 

Van der Wurff, 2019 Netherlands 13-18 WB 3.93 

Bonafini,2020 Italy 9-10 WB 4.19 
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Murphy A, 2021 USA 3-5 plasma 2.36 

6-11 2.47 

12-19 2.46 

Syrèn ML, 2022 Italy 2  WB 3.26 

2-10 3.03 

10-19  2.99 

The O3I are those reported in the mentioned papers or calculated on the basis of the EPA+DHA levels in 

other specimens than RBC, as reported by Stark et al.148.  

The correlations between the ω-3 FA levels of all the patients and days of hospitalization 

(DoH) were investigated, and the only correlations found were a negative correlation for 

docosapentaenoic acid (DPA) and DoH (p=0.013) (Table 6). In a further assessment, O3I 

values were divided into quartiles as follows: Q1 (<1,88%), Q2 (1.88≤O3I<2.29%), Q3 

(2.29%≤O3I<2.51%), and Q4 (O3I≥2.51%) (Table 7). Concerning age and days of H, no 

significant differences among quartiles were found. On the other hand, for the upper 

quartile Q4 versus the other three together Q1-Q3, the days of H were significantly lower 

in Q4 with respect to Q1-Q3. The chi-squared test revealed that there was no association 

between PICU and O3I quartiles, nor in Q4 versus Q1-Q3 analyses. 

Table 6. Correlations between ω-3 fatty acid levels and days of hospitalization. 

Fatty acids R=Spearman coeff P-value 

ALA -0.025 0.863 

EPA 0.209 0.141 

DPA -0.347 0.013 

DHA -0.241 0.089 

Total ω 3 -0.234 0.099 

O3I -0.178 0.212 
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Fatty acid levels are expressed as relative percentages. The statistical significance was estimated 

administering the two-tailed Spearman’s nonparametric test. ALA, alpha linolenic acid; EPA, 

eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; and O3I (calculated as 

reported in the Methods).  

Table 7. Unadjusted associations of O3I quartiles and different variables 

Categorical by O3I 

quartile 

Age 

mean±SD 

Sex -Male% 

(X/N) 

Days of H 

mean±SD 

PICU% (X/N) 

Q1: O3I<1.88% 8.00±3.10 72.73% (8/11) 12.58±4.29 45.45% (5/11) 

Q2: 

1.88%≤O3I<2.29% 

8.31±3.40 75.00% (12/16) 14.88±4.29 65.20% (10/16) 

Q3: 

2.29%≤O3I<2.51% 

8.64±4.30 63.64% (7/11) 15.91±5.84 54.54% (6/11) 

Q4: O3I≥2.51% 8.79±4.33 84.62% (11/13) 11.21±3.95 53.85% (7/13) 

p-value* 0.79 0.704 0.07 0.855 

Comparison Q1-Q3 vs Q4 

Q1-Q3: O3I<2.51% 8.32±3.51 71.05% (27/38) 14.84±4.15 60.53% (23/38) 

Q4:       O3I≥2.51% 8.79±4.33 84.62% /11/13) 11.21±3.95 53.85% (7/13) 

p-value* 0.367 0.333 0.031 0.67 

O3I, ω-3 index; H, hospitalization; PICU, intensive care unit 

*The p-value was calculated administering the non-parametric Kruskal Wallis test for age and 

days of H, and the chi-squared test for sex and PICU 
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Discussion 

Several reviews have suggested that during the pandemic ω-3 PUFA supplementation may 

have been able to regulate and ameliorate the inflammatory status of patients 109,110.  In fact, 

EPA and DHA are the precursors of anti-inflammatory compounds, i.e. resolvins, 

maresins, and protectins, which are involved in the resolution of inflammation unlike those 

compounds derived from arachidonic acid 67–69. In fact, we previously reported an altered 

FA profile in children diagnosed with MIS-C. LA, AA and DHA levels were lower than 

those of control children, suggesting the conversion of these FAs to molecules with pro and 

anti-inflammatory activities in order to counteract the hyper inflammation status 133. The 

present work reports data concerning FAs and O3I in children, hospitalization,  and 

admission in PICU. In general, the FA profile of these children is altered (not shown) 

confirming our previous findings 133, and also the levels of O3I are significantly lower than 

those of healthy children.  

As mentioned, we focused on ω-3 PUFA and found that their profile was similar in the 

PICU group versus the NO PICU group, as was the O3I. In none of the subjects were 

correlations found with the days of hospitalization, except for ω-3 DPA (negative 

correlation).  In addition, O3I quartiles were not associated with age, sex, admission in 

PICU and days of hospitalization, whereas in the comparison of the upper quartile (Q4:O3I 

≥2.51%) versus the others (Q1-Q3 < O3I 2.51%), a significant relation with days of 

hospitalization was found.  

Asher et al. were the first to investigate a possible association between O3I and the 

mortality of Covid-19 in a group of 100 hospitalized adults and, although not significant, 

a strong, negative trend was found104. The patients with severe COVID-19 had low O3I 

values that were inversely associated with the major clinical endpoints (mechanical 

ventilation, death) of the disease 101, and high levels of O3I were associated with a 48% 

reduction in the risk of severe pathology 149 .  

A recent retrospective study confirmed that low ω-3 levels and O3I, are associated with an 

increased risk of hospitalization, but not significantly with the risk of death 131. In addition, 
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the levels of O3I found, were similar to those proposed as a cut-off for risk of death from 

cardiovascular disease 150 . In line with these observations, only a few supplementation 

studies with ω-3  FA have reported an amelioration in clinical symptoms in covid-19 adult 

patients 100,151 . The strength of our finding is the significant difference between quartiles 

with respect to DoH. This aspect should also be further investigated in the paediatric 

population, in order to identify those patients most at risk and provide early intervention, 

with a larger sample size. In conclusion, in our small group of MIS-C patients, higher levels 

of O3I were associated with fewer days of hospitalization, whereas the admission to PICU 

did not seem to be affected. 
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Introduction  

Children infected with SARS-CoV-2 may develop multisystem inflammatory 

syndrome (MIS-C) 4-6 weeks after exposure 152. Less than 1% of children with proven 

COVID-19 exposure also acquired MIS-C 153. The demographic characteristics of the 

patients showed a predominance of males and an age range of between 7 and 10 years 

154,155.  

Multiple organ failure is a consequence of the disease, manifested by gastrointestinal, 

cardiovascular, haematological, mucocutaneous, neurological, and respiratory 

symptoms 156. The intensive care unit (ICU) care is required for some patients with 

more severe disease 157. According to several studies, ICU care is required in 50–80% 

of children with MIS–C 158.   

The primary function of a cytokine storm and the impact of adaptive immunity 

following SARS-CoV-2 infection are described  for the most widely accepted 

explanation of the pathogenic mechanism of MIS-C 159,160. Additionally, some intrinsic 

susceptibility factors have been described, and evidence of molecular mimicry for MIS-

C pathogenesis has also been provided 161. During the acute phase of MIS-C, altered 

glucose metabolism (high Homeostasis Model Assessment for Insulin Resistance 

(HOMA-IR) and Tyg Index values) and a reduction in body mass index (BMI)z-score 

have been reported in children 162,163. Regarding blood fatty acid status, lower levels ω-

6 LA and AA were found, probably as a result of massive release from phospholipid 

stores, followed by metabolic conversion into pro-inflammatory lipid mediators 133.  

A new genus of metabolites derived from ω-3PUFA has been identified as possessing 

potent anti-inflammatory and pro-resolvin properties, providing evidence that lipid 

mediators may also play a key role in the physiological resolution of the inflammatory 

process 128. ω-3 FAs have been reported to modulate immunity and activate 

inflammatory resolution processes. DHA and eicosapentaenoic acid (EPA) metabolites 

produced by several lipoxygenases have been established as specialized pro-resolving 

mediators (SPMs), which are a family of compounds involved in tissue regeneration 

that also includes resolvins, protectins, maresins, and maresin conjugate 164. By 
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activating macrophages with an anti-inflammatory phenotype (M2) and promoting 

phagocytosis in a non-phlogistic manner, SPMs produced by the metabolism of ω-

3PUFAs reduce the synthesis of pro-inflammatory mediators and neutrophil 

recruitment 133.  The ω-3EPA and DHA content of red blood cells is expressed as a 

proportion of the total weight of FAs in red blood cell membranes, and this is known 

as the ω-3 Index (O3I) 129. In adult patients higher circulating ω-3 FAs, have been 

associated with a better prognosis for COVID-19 130.   

Harris et al. investigated the levels of blood DHA in a large, prospective, population-

based cohort of 110,584 individuals to compare the risk of COVID-19 outcomes, 

including testing positive for SARS-CoV-2, hospitalization, and death, in relation to 

the baseline plasma DHA levels. Their findings indicate that individuals with high 

levels of DHA experienced a 26% reduced risk of hospitalization, positive test 

outcomes, and mortality compared to those with low levels 131. Additionally, a scoping 

review of adult patients found that ω-3 supplementation enhances renal and 

respiratory function, reduces the probability of positive test results for SARS-CoV-2 

infection and symptoms, and improves survival rates 132.  A cross-sectional study by 

Zapata et al. confirmed previous findings, revealing that patients with severe COVID-

19 had a reduced O3I, associated with a low consumption of fish and ω-3 supplements. 

The higher the O3I, the lower the risk of requiring mechanical ventilation and 

mortality; this association continued to be significant after accounting for age, sex, and 

other covariates 101. During the acute phase of MISC in children, LA, AA and DHA 

were lower by an average of 38, 35 and 38%, respectively 133, when compared to 

previously reported values for children97,140,143,147. Vitamin D supplementation is 

necessary during this phase, but no other interventions are required in children with 

MIS-C 165.   
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Aim 

We aimed to evaluate the short-term beneficial effects on inflammatory markers after 

DHA supplementation in children who suffering from MIS-C.  

Materials and methods  

Subjects 

A group of 52 children and adolescents (2-18 years old) with MIS-C, as defined according 

to the CDC classification 10, were enrolled at the Department of Paediatrics at the Vittore 

Buzzi Children’s Hospital in Milan, Italy, between 1 December 2020 and 31 March 2022. 

For all patients, a clinical and biochemical assessment was recorded on admission. 

Anthropometric measurements were collected at admission and before hospital 

discharge. 

After 5–7 days from admission (T0), a drop of blood was collected on Guthrie test paper 

from each patient and stored in a refrigerator until analysis as described below. At this 

time, the drug therapy of children was also recorded. Consecutively, 23 patients at the 

time of hospital discharge received instructions for DHA supplementation (1ml/day 

equals to 250 mg of DHA) (see Suppl. Table 1) to be carried out for three consecutive 

months. The control group of 29 children did not receive any supplementation advice  . 

Recommendations on healthy eating habits, following the Mediterranean diet, were 

explained and given to each child and caregivers at discharge. At the follow-up visit three 

months after discharge (T1), blood samples were also collected as described.  

Six months after discharge (T2), the patients were examined in a multidisciplinary setting 

and a further blood sample was carried out and stored as described above. In the 

supplemented group (Group 1), six children who had taken DHA for less than 3 months, 

and two children who had not attended the visits at 3 and 6 months, were excluded from 

the final analysis. In the other group (Group 2) nine children had not attended the T1 visit, 

and five who had not attended T2 were excluded from the final analysis. The final analysis 

was thus performed on 15 patients in each group, as shown in Figure 16.  
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Figure 16. Flow chart of enrolled patients 

  

The study was conducted according to the guidelines of the Declaration of Helsinki and 

approved by the Institutional Review Board of the hospital (protocol number 

2021/ST/004). Children’s caregivers gave their written consent for inclusion after being 

informed about the nature of the study. 

Anthropometric and Blood Measurements 

Physical examination included anthropometric measurements of weight and height and 

BMI. Weight and height were measured using a mechanical column scale with an altimeter 

(Seca 711 and Seca 220), arm and waist circumferences were measured with a tape measure 

(Seca 201), and tricipital skinfolds were measured using a calliper (Holtain 610). BMI 

(kg/m2) and BMI z-scores were calculated according to CDC growth chart reference 

values166. 

The diagnostic procedure for confirming the MIS-C diagnosis involved a complete blood 

count and measurements of the C-reactive protein (CRP), procalcitonin, ferritin, cardiac 

troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-proBNP), coagulative 
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parameters, creatine kinase, electrolytes, and interleukin-6 (IL-6). These measurements 

were compared to our clinical laboratory’s normal range values. Additionally, the 

metabolic profile including total and high-density lipoprotein cholesterol (HDL), fasting 

plasma glucose (FPG), insulin and triglycerides (TG) was acquired from a blood sample 

obtained in a fasting state between 8:30 and 9:00 a.m. Insulin was measured using the 

electrochemiluminescence immunoassay (ELCIA) method. The triglyceride–glucose 

(TyG) index as a surrogate for insulin resistance was calculated as [ln(fasting triglycerides 

(mg/dL) fasting plasma glucose (mg/dL)/2)] 167,168; the cutoff point for pathological IR was 

set at 7.88 169,170. The blood analysis was repeated at the six- month visit (T2), except for 

those parameters closely related to MIS-C diagnosis.  

Fatty Acid Analysis 

The FA profile was evaluated in a drop of blood collected on Guthrie paper embedded 

with butylated hydroxy toluene (BHT) as an antioxidant. After direct transmethylation, 

FA methyl esters were analyzed by gas chromatography using a GC-2100 (Shimadzu 

Italia S.r.l., Milan, Italy) equipped with a 15 m capillary column (DBB Agilent), PTV 

injector and FID detection 135,171 . Relative percentages were used to report 23 FAs; total 

saturated FA (SAT), monounsaturated FA (MUFA), and PUFA were also reported. In 

addition, the O3I was calculated in accordance with Stark et al 148.  

Statistical analysis 

The statistical analyses were performed using IBM SPSS statistics v. 28.01. The analyses 

and differences were considered significant for p<0.05. 

Results 

At the start of the study 52 subjects (children and adolescents) with MIS-C were enrolled. 

For each group, 15 patients attended all the follow- up visits (T1 and T2). Table 8 shows 

the general characteristics of the sample. 
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Table 8. Study participants’ characteristics at baseline. 

 Average ± SD 

Number of recruited subjects  52 

M/F 37/15 

Age (y) 8.78±3.95 

Height (cm) 134±25 

Weight (Kg) 34.72±15.67 

BMI z-score WHO 0.53±1.21 

Tricipital Skinfold (p.le) 58.88±20.51 

 

Table 9 shows the FA profile in Group 1 at the various times. At T1 there was a significant 

increase in DHA, DPA and EPA with respect to T0. At the same time, ω-6 FAs (i.e. LA, 

AA) had increased, whereas oleic acid (18:1) had decreased considerably. At T2, LA was 

significatively higher than T0 and T1, and oleic acid was lower than T0 and higher than 

T1. In the case of AA (increase), DHA, DPA and EPA (decrease), the levels were not 

significantly different from T1.  

The FA profile in Group 2 revealed a similar trend over time (Table 10). In fact, there was 

an increase in LA, AA, DPA and DHA from T0 to T2, and a decrease of oleic and palmitic 

acids. The FA levels in Group 1 versus Group 2 (Table 11) at T0 were very similar, with 

the exception of γ-linolenic acid (GLA 18:3 ω6), EPA and DPA (lower and higher levels 

in Group 1 vs Group 2) with significant differences. At T1, after DHA supplementation, 

the differences between groups were more evident for saturated and monounsaturated 

FAs, and for both ω-6 and ω-3 FA. At T2 significant differences between groups were 

retained only for stearic acid (18:0), and for EPA and DHA (Table 11). 

Table 9. Whole blood fatty acid profile in Group 1 (n=15) (supplemented with DHA). 

Fatty Acids % w/w±SD 

at T0 in Group 1 

% w/w±SD at T1 in  

Group 1 

% w/w±SD 

at T2 in Group 1 

 

16:0 27.92±1.66a 26.53±2.08b.c 25.29±1.70c  
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18:0 10.15±1.09a 14.07±1.16b 12.46±1.34c  

20:0 0.41±0.10a 0.57±0.08b 0.44±0.11a.c  

22:0 1.04±0.22a 1.86±0.30b 1.59±0.24c  

24:0 1.72±0.55a 3.21±0.70b 2.64±0.59c  

16:1 3.14±0.83a 1.28±0.37bc 1.20±0.54c  

18:1 n-9 27.07±3.39a 16.13±2.15b 18.58±3.20c  

18:1 n-7 1.65±0.28a 1.66±0.37a 1.39±0.32b.c  

20:1 0.20±0.13 0.16±0.04 0.18±0.04  

22:1 0.08±0.03a 0.13±0.08b 0.04±0.06c  

24:1 2.11±0.58a 2.97±0.60b 2.56±0.47c  

20:3 n-9 0.17±0.10 0.14±0.04 0.13±0.03  

18:2 ω-6 12.57±2.22a 14.56±1.58b 17.71±2.82c  

18:3 ω-6 0.68±0.41a 0.25±0.18b.c 0.19±0.08c  

20:3 ω-6 1.13±0.30a 1.43±0.38b,c 1.34±0.20c  

20:4 ω-6 6.60±1.21a 9.05±1.79b,c 9.29±2.20c  

22:4 ω-6 0.84±0.26a 1.13±0.42b.c 1.06±0.32c  

22:5 ω-6 0.36±0.08a 0.79±0.32b 0.33±0.09a,c  

18:3 ω-3 0.20±0.09 0.29±0.16 0.21±0.08  

20:5 ω-3 0.32±0.09a 0.46±0.10b.c 0.41±0.08c  

22:5 ω-3 0.48±0.10a 0.65±0.16b.c 0.60±0.20a,c  

22:6 ω-3 1.19±0.25a 2.67±0.78b.c 2.37±0.87c  

SAT 41.23±2.42a 46.23±3.13b 42.42±2.36a.c  

MONO 34.24±3.61a 22.33±2.05b,c 23.94±3.38c  

POLY 24.52±2.75a 31.43±3.09b 33.64±2.33c  

I.I.           108.56±6.99a 124.07±10.84b,c 127.31±9.08c  

ω-6          22.17±2.71a 27.21±2.76b               29.93±2.10c 

ω-3 2.18±0.35a 4.08±0.80b,c               3.59±1.13c 

ω-6/ω-3 10.42±2.05a 6.88±1.31b               9.12±2.79c 

DHA/AA 0.18±0.3a 0.31±0.10b               0.25±0.06c 

EPA/AA 0.05±0.02a,b 0.05±0.01a               0.05±0.01b,c 
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Data are expressed as mean ± standard deviations (SDs) of FAs of the relative percentage (weight/weight) 

of all the FAs considered - see Methods. Statistical analysis performed: paired Student's t test. Values that 

do not share the same suffix (abc) are significantly different for p-value < 0.05. 

 

Table 10. Whole blood fatty acid profile in Group 2(n=15) (no DHA supplementation).  

Fatty Acids % w/w±SD 

at T0 in Group 2 

% w/w±SD 

at T1 in Group 2 

% w/w±SD 

at T2 in Group 2 

16:0 29,43±2,45a 24,56±2,12b,c 24.39±0.9c 

18:0 10.62±1.57a 12.74±1.34b 11.84±0.65c 

20:0 0.39±0.12a 0.54±0.09b 0.46±0.05a.c 

22:0 1.06±0.21a 1.62±0.20b,c 1.52±0.19c 

24:0 1.67±0.44a 2.74±0.47b,c 2.66±0.37c 

16:1 2.77±1.21a 1.09±0.25b,c 1.26±0.42c 

18:1 n-9 27.67±4.27a 21.64±3,97b,c 20.15±1.81c 

18:1 n-7 1.63±0.32a 1.44±0.24a 1.31±0.21b,c 

20:1 0.19±0.08 0.18±0.08 0.16±0.04 

22:1 0.07±0.05 0.11±0.15 0.11±0.15 

24:1 2.00±0.44a 2.75±0.45b,c 2.74±0.33c 

20:3 n-9 0.15±0.09 0.12±0.04 0.16±0.06 

18:2 ω-6 12.70±2.27a 17.92±2.66b,c 19.29±1.94c 

18:3 ω-6 0.33±0.31 0.29±0.14 0.24±0.09 

20:3 ω-6 0.94±0.32a 1.09±0.18a 1.30±0.24b,c 

20:4 ω-6 5.31±1.84a 7.35±1.38b,c 8.30±1.55c 

22:4 ω-6 0.65±0.29a 0.91±0.26b,c 1.04±0.26c 

22:5 ω-6 0.33±0.16 0.34±0.16 0.31±0.08 

18:3 ω-3 0.17±0.06a 0.36±0.16b 0.20±0.06a,c 

20:5 ω-3 0.41±0.11a 0.28±0.10b,c 0.33±0.09c 

22:5 ω-3 0.41±0.22a 0.48±0.10a,c 0.57±0.13b,c 

22:6 ω-3 1.09±0.51a 1.44±0.47a,c 1.70±0.43b,c 

SAT 43.17±3.34 42.20±3.22 40.88±1.46 

MONO 34.35±4.64a 27.20±3.71b,c 25.68±2.16c 
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POLY 22.48±4.60a 30.60±4.03b 33.44±2.24c 

I.I.   100.61±12.45a 115.86±10.40b 123.57±6.84c 

ω-6          20.26±4.12a 27.91±3.74b 30.48±2.19c 

ω-3 2.07±0.75a 2.57±0.57a.c 2.80±0.56b,c 

ω-6/ω-3 10.42±2.72 11.24±2.11 11.27±2.27 

DHA/AA 0.20±0.05 0.19±0.05 0.21±0.04 

EPA/AA 0.09±0.05a 0.04±0.01b,c 0.04±0.01c 

Data are expressed as mean ± standard deviation (SD) of FAs of the relative percentage (weight/weight) of 

all the FAs considered - see Methods. Statistical analysis performed: paired Student's t test. Values that do 

not share the same suffix (abc) are significantly different for p-value < 0.05. 

Table 11. Statistical analysis of fatty acid levels between Group 1 (suppl DHA) vs Group 2 (no 

DHA) at T0, T1 and T2.   

Fatty Acids Group 1 vs Group 2 T0 Group 1 vs Group 2 T1 Group 1 vs Group 2 T2 

16:0 0.081 0.013 0.061 

18:0 0.461 0.003 0.023 

20:0 0.775 0.233 0.806 

22:0 0.806 0.026 0.305 

24:0 0.713 0.041 0.838 

16:1 0.217 0.202 0.744 

18:1 n-9 0.87 <0.001 0.05 

18:1 n-7 0.624 0.074 0.412 

20:1 0.713 0.902 0.174 

22:1 0.325 0.233 0.412 

24:1 0.838 0.325 0.148 

20:3 n-9 0.653 0.217 0.098 

18:2 ω-6 0.902 <0.001 0.089 

18:3 ω-6 0.015 0.174 0.126 

20:3 ω-6 0.098 0.003 0.595 

20:4 ω-6 0.067 0.013 0.25 

22:4 ω-6 0.098 0.233 0.967 



115 
 

22:5 ω-6 0.081 <0.001 0.744 

18:3 ω-3 0.461 0.067 1 

20:5 ω-3 0.019 <0.001 0.023 

22:5 ω-3 0.037 0.003 0.713 

22:6 ω-3 0.345 <0.001 0.023 

SAT 0.174 0.002 0.098 

MONO 0.967 <0.001 0.056 

POLY 0.412 0.461 0.87 

I.I. 0.098 0.089 0.285 

ω-6          0.325 0.002 0.436 

ω-3 0.233 <0.001 0.037 

ω-6/ω-3 0.902 0.461 0.041 

DHA/AA 0.161 0.089 0.041 

EPA/AA 0.008 0.015 0.461 

Statistical analysis performed: U Mann Whitney test for non-parametric values that are significantly 

different for p-values <0.05. 

Figure 17 shows the trend of the amounts of FAs measured at the different time points in 

the two groups. ω-3 FAs increased in both groups, but the increase in Group 1 

(supplemented with DHA) was higher: +   124% versus +  32% of DHA respectively at 

T1, and +  99% versus +  56% of DHA, respectively, at T2 (panel A, panel B). In addition, 

Group 1 DHA showed (panel A) a typical bell-shaped trend, due to supplementation 

followed by wash-out. FAs in the ω-6 series showed a similar trend in both groups; LA and 

AA increased from T0 to T2; the increase was more pronounced for Group 2 (panel C, panel 

D).  
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Figure 17. Fatty acid levels in Group 1 and Group 2 at T0, T1 and T2. 

 

The fatty acid values at the three times in the two groups were also compared with 

reference values found in the literature (Supplementary Table 2). In Group 1, the DHA 

values remained higher than the reference values, even after the 3-month wash-out, and 

likewise for EPA. LA values were also higher in Group 1 than in Group 2. Clinical 

parameters were measured at T0 and at T2 (Table 12). At T0, all the parameters were 

higher than the reference values due to the inflammatory status. At T2, the parameters 

returned to the normal range, except for the TyG index which was still high in both 

groups. 

Table 12. Blood values in Group 1 and Group 2 at T0 and T2. 

 Biochemistry Group 1 

T0  

Group 1 

T2  

Group 2 

 T0  

Group 2 

at T2 

Referenc

e values 

CRP (mg/L) 199.8±105.6 0.8±1.1 175.5±88.3 0.9±0.5 ≤10 mg/L 

Ferritin (μg/L) 1537.1±1881.3 30.7±12.7 593.7±504.2 25.5±14.4 <300 µg/L 

ESR (mm/h) 51±27.2 5.6±5.4 59.9±32.6 9.1±6.4 ≤30 mm 

IL-6 (ng/L) 33±67.6  0.5±0.5  6±83.6  0.4± 81.8  7 (ng/L) 
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Albumin 

(g/dL) 

2.6±0.4 4.5±0.3 2.8±0.5 7.1±10.5 35–50 g/L 

D-Dimer 

(μg/L) 

3763,5±3535.7 439.8±294.9 5736.7±6062.4 425.5±402.6 <500 µg/L 

Fibrinogen 

(g/L) 

6.5±0.8 4.1±0.7 5.6±1.5 3.9±0.6 <4 g/L 

Glucose 

(mg/dL) 

111.53±37.11 87.47±7.93 118.36±30.81 86.53±5.13 70–110 

mg/dL 

Triglycerides 

(mg/dL) 

227±96.42 89.93±51.68 207.29±103.47 74.67±24.09 <75 

mg/dL 0–

9 yo 

<90 

mg/dL  

10–19 yo 

Tryg index 9.3±0.52 8.16±0.51 9.28±0.49 8.03±0.33 <7.88 

Data are expressed as mean ± standard deviation (SD) of blood values. 

Analyses were performed to search for possible correlations between inflammatory-

related parameters such as CRP, ferritin, IL-6, TyG index, ESR, D-dimer, fibrinogen, and 

the most important FA, i.e. LA, AA, ALA, EPA, DPA and DHA (see Supplementary 

Tables 3, 4, 5, 6). At T0, in Group 1 the only correlation found was a negative one between 

DPA and TyG index, whereas there were no correlations in Group 2. At T2, in Group 1 

positive correlations were found between EPA and ESR and D-dimer, and positive 

correlations between DHA, O3I and ferritin. In Group 2, there were negative correlations 

between EPA and ESR, and between DHA and CRP (Table 13).  

Table 13. Significant correlations between blood values and fatty acid profile of Group 1 and Group 

2 at T0 and T2. (All correlation values are shown in Supplementary Tables 3, 4, 5 and 6). 

Group 1 

T0         LA  AA  ALA  EPA DPA DHA  O3I 

Tryg-Index r 0.06 -0.36 0.21 0.22 -.59* -0.33 -0.33 
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N= number of sample size. r = correlation. p = p value 

Lastly. Figure 18 shows the reduction levels, expressed as % (T2-T0), of the inflammation 

markers measured in the two groups. CRP decreased equally in both groups, while ESR 

and IL-6 decreased more in Group 1.  

 p 0.82 0.18 0.43 0.42 0.02 0.22 0.22 

 N 15 15 15 15 15 15 15 

T2         LA  AA  ALA  EPA DPA DHA  O3I 

ESR r -0.23 0.02 0.23 .53* 0.22 0.09 0.13 

p 0.42 0.94 0.41 0.04 0.43 0.73 0.63 

N 15 15 15 15 15 15 15 

Ferritin r -0.35 0.43 0.16 0.33 0.42 .52* .52* 

 p 0.19 0.11 0.56 0.23 0.11 0.04 0.04 

 N 15 15 15 15 15 15 15 

D-dimer r 0.00 0.27 -0.19 .53* 0.24 0.14 0.16 

 p 0.99 0.32 0.49 0.04 0.37 0.60 0.57 

 N 15 15 15 15 15 15 15 

Group 2 

T2       LA  AA  ALA  EPA DPA DHA  O3I 

CPR 

 

r .52* 0.14 -0.06 -0.19 -0.13 -.60* -0.16 

p 0.05 0.61 0.83 0.49 0.63 0.01 0.55 

N 15 15 15 15 15 15 15 

ESR r -0.06 -0.20 0.05 -0.24 -.60* -0.44 0.24 

p 0.83 0.46 0.85 0.39 0.02 0.09 0.38 

N 15 15 15 15 15 15 15 
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Figure 18. Delta (Δ) % reduction (T0-T2) of inflammatory markers in Group 1 (DHA) and Group 

2 (NO DHA). 

Discussion  

Current evidence supports the use of ω-3 FA supplementation in the prevention and 

treatment of a wide range of human diseases, including coronary artery disease, diabetes, 

hypertension, arthritis, and other inflammatory and autoimmune conditions172,173. ω-3 FAs 

appear to play an important therapeutic role in the treatment of several diseases. By 

triggering the production of SPMs, ω-3 FAs actively control the inflammatory process. 

These mediators reduce the severity of the inflammatory process and promote its active 

resolution by suppressing the overproduction of pro-inflammatory lipid-derived 

compounds and cytokines 174.   

Inflammation has two main phases: initiation and resolution. During the initiation phase, 

ω-6 ARA enters the cells through the phospholipid membrane and produces a series of 

molecules called eicosanoids, which are involved in the inflammatory process175. At the 

same time, the ω-3 EPA, DHA and DPA also enter the cells, and act as substrates for 

specialised pro-resolving mediators (resolvins, protectins and maresins), thereby 

modulating inflammation128. In adults, lower levels of DHA and O31 have been associated 

with a higher risk of adverse COVID-19 outcomes131.  
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In this study, we analysed the FA profile and inflammation-related blood values in a 

cohort of children with MIS-C. One group was supplemented with DHA for three months. 

Our aim was to investigate correlations between FA levels and blood values during the 

acute phase, and after six months, and to examine the short-term benefits of DHA 

supplementation.  

Interestingly, our results showed significant differences between Group 1 and Group 2 

for DHA levels at T2. EPA levels were significantly higher in Group 1 than in Group 2 at 

all three times. DPA increased significantly in the supplemented Group 1 compared to 

Group 2 at both T0 and T1.  At the same time, O3I and DHA/AA were significantly higher 

in Group 1 at T2.  A significantly higher ω-6:ω-3 ratio (typical of a Western diet) was found 

in Group 2 compared to Group 1 at T2.  

The study highlights the continued presence of ω-3 levels in Group 1, which is the group 

that received supplementation. Both groups showed complete resolution of inflammation 

at T2, which can be attributed to the physiological process that naturally follows the acute 

phase of the disease. Nevertheless, the correlations between blood levels and FAs show a 

positive trend, possibly due to our small sample size.   

Another limitation of our study was the inability to measure SPMs, which represent the 

inflammatory status. Nonetheless, we recommend early DHA supplementation in 

children with inflammatory diseases such as MIS-C to improve the inflammatory 

response and facilitate a better prognosis. Ongoing supplementation over time is also 

advisable to support full recovery of daily activity and normal function in children. 

Studies in adults with severe COVID-19 show the benefits of early use of ω-3 PUFA 

supplementation 106,176,177. Therefore, further research should evaluate the benefits for 

critically ill paediatric patients of an early use of ω-3 PUFA in the hospital setting and 

during follow-up. 
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5.6 Discussion and conclusion   

Glucose and lipid metabolism profile was found to be altered during hospitalisation in 

children diagnosed with MIS-C, suggesting multi-organ inflammatory involvement. In 

severely ill patients it is common to have alterations in glucose metabolism 62,63.  In the adult 

population an interaction between COVID-19 and glucose-insulin metabolic disturbances 

has been proven 178,179, and in the paediatric population a relationship between SARS-CoV-

2 infection and type 1 diabetes mellitus has been described180.  

The results we observed are no different from what is expected in the adaptive metabolic 

response to inflammation. However, it is possible to hypothesise a bidirectional 

relationship between COVID-19 and glucose impairment. Glycaemic fluctuations could be 

caused by the inflammatory cascade of the SARS-CoV-2 attack on the pancreas and 

potentially impaired β-cell function. Both hepatic and peripheral insulin action were 

supported by the significant prevalence of abnormal values in the HOMA-IR and TyG 

indices in our cohort of children. Despite hyperinsulinemia, the effect of counterregulatory 

hormones on IR in skeletal muscles may be mediated via an increase in circulating free 

fatty acid levels.  

In addition, in order to observe the FA levels for each patient we collected a blood sample 

(using the Guthrie test) during inflammatory status, as lipid mediators also play a role in 

the physiological evolution of inflammation and its resolution. We found lower relative 

amounts of ω-6 PUFA (LA and AA) in MIS-C subjects than those reported in the literature 

for healthy children. These values remain lower after dividing the subjects according to 

age ( <9 years and >9 years ), probably due to a massive release of phospholipids followed 

by metabolic conversion into pro-inflammatory lipid mediators. The levels of ω-3 PUFAs 

ALA and EPA were broadly in line with those found in the literature 94, 95, 96, 97, 98, whereas 

the levels of DHA were lower, likely due to increased SPM formation, which, however, 

does not seem to be sufficient to ameliorate the hyperinflammatory status.  

Only one direct correlation was found between relative amounts of ALA and CRP 

concentration, while no statistically significant correlation was found between markers of 
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inflammation and relative amounts of relevant FAs (i.e. LA, AA, EPA and DHA). Although 

ALA is a precursor to ω-3 PUFAs, its conversion in humans is limited and more 

pronounced in females than males 181 . Therefore, we can speculate that ALA may also have 

led to a reduction in pre-resolution SPM formation and an increase in the number of 

inflammatory biomarkers. In our cohort, O3I was not found to be associated with any 

markers of inflammation (IL-6, CRP or ESR), but it should be noted that in adult patients 

with an O3I of 5.7% or higher, the risk of death was lower than in patients with an O3I 

below this value 131.   

PUFA ω-6 and ω-3 values observed in MIS-C children may reflect the severity of the 

inflammatory status, with higher values in milder cases, and vice versa. The FA profile of 

MIS-C children is altered during hospital stay, and the levels of O3I are significantly lower 

than those of healthy children. However, higher levels of O3I are associated with a lower 

number of DoH , whereas the admission to PICU does not seem to be affected.  

According to recent findings, ω-3 PUFAs play a critical therapeutic function in treating 

various diseases172,173. They actively regulate the inflammatory process by inducing the 

formation of SPMs 174. To enable the best possible inflammatory response, it is crucial to 

maintain an omega 3–6 balance 128 . A number of clinical studies conducted during the 

SARS-CoV2 pandemic have indicated the potential benefits of supplementing with ω-3 

PUFAs to control and improve a patient's inflammatory status 101,104,149. Some trials revealed 

an improvement in clinical symptoms in Covid-19 adult patients after ω-3 PUFAs 

supplementation 100,151.  

We observed consistently higher levels in the group that had received supplementation, 

but at the same time no significant correlations between fatty acid levels and markers of 

inflammation in the total population included in our study. However, it may be interesting 

to further investigate the use of ω-3-supplementation in the critically ill paediatric 

population, both in the acute phase and afterwards, by detecting SPMs as markers of 

inflammation. 
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Chapter 6  

 

Future perspectives 

 

 

Our results on the paediatric population with MIS-C would seem to indicate that although 

the clinical course is positive, hospitalisation is prolonged. This is a key aspect as the risk 

of malnutrition can set in insidiously and create a loss of muscle mass. Screening and 

monitoring are useful in an acute hyperinflammatory disease such as in this case.  

The role of ω-3 PUFA appears to be pivotal. Indeed, due to the high inflammatory 

response, endogenous utilisation is high. Therefore, an appropriate supplementation of ω-

3 would seem to be supportive to ameliorate the inflammatory status in acute phase and 

later . In addition, children who have had this pathology experienced a particular historical 

moment that accentuated various aspects related to sedentariness, altered eating habits, 

and the difficulty of resuming normal daily activities as well as spontaneous movements 

and sports. Although the Sars-cov-2 pandemic in the paediatric population did not have 

the same impact as it did in the adult population, it was nevertheless significant. We 

recommend that children and teenagers should be screened for the risk of malnutrition in 

long hospitalization setting and that targeted advice regarding diet and use of specific 

supplements can improve short- and long-range inflammatory outcomes.  

As a future prospectives, in the paediatric setting it would be interesting to evaluate the 

efficacy of ω-3 supplementation in the acute phase by means of SPM dosage. In fact, in 

critical adults (ARDS, sepsis, COVID-19, and organ injury) its efficacy has been proven by 

several systematic reviews and meta-analyses. Future research needs to focus on the 

optimal dosages of ω-3 PUFAs, the optimal routes of administration, and which target 

paediatric population would benefit the most. 
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Chapter 8  

 

Supplementary Tables 

 

Suppl. Table 1: composition of DHA supplement 

 100 ml  

Energy kcal 845 kcal 

Fat 94 g 

-Saturated fat  69 g 

-

Monounsaturated 

fat 

0 g 

-Polyunsaturated 

fat 

25 g 

Carbohydrates 0 g 

-Sugar 0 g 

Protein 0 g 

Salt  < 0.1 g 

DHA (from algae 

oil) 

25.000 mg 

Vitamin D3 40.000 UI ( 

1000 µg) 

 

Suppl. Table 2 Whole blood fatty acids profile in Group 1 and Group 2 at T0, T1 and T2 compared 

to references range from literature.  

Group/Author Group 1 at T0, T1 and T2 Group 2 at T0, T1 and T2 Risé93 Crippa94 Bonafini95 

 

Van der 

Wurff96  

Ryan97 

 

 

Age (year) 

2-18 y 2-18 y  

<9 

 

7-14 

 

7-9 

 

13-15 

 

4 

% LA  12,57 

±2,22 

14.56±1.58 17.71±2.82 12.70±2.27 17.92±2.66 19.29±1.94 17.6±1.92 22.54±2.45 19.9±2.32   
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% AA 6.60±1.21 9.05±1.79 9.29±2.20 5.31±1.84 7.35±1.38 8.30±1.55 8.33±1.04 10.10±0.92 12.21±1.67 11.01±11.33 7.50±1.89 

% ALA 0.20±0.09 0.29±0.16 0.21±0.08 0.17±0.06 0.36±0.16 0.20±0.06 0.15±0.05  0.16±0.08   

% EPA 0.32±0.09 0.46±0.10 0.41±0.08 0.41±0.11 0.28±0.10 0.33±0.09 0.23±0.08 1.13±0.45 0.30±0.17 0.34±0.42 0.30±0.39 

% DHA 1.19±0.25 2.67±0.78 2.37±0.87 1.09±0.51 1.44±0.47 1.70±0.43 1.40±0.37 1.93±0.53 2.92±0.76 2.49±2.63 1.00±0.34 

 

 

Suppl. Table 3. Correlation analysis between blood values and fatty acids Group 1 at T0  

 

Group 1       

 Blood values a T0  LA  AA  ALA  EPA DPA DHA  O3I 

CPR 
 

r -0.229 -0.013 0.433 -0.214 -0.188 0.218 0.282 

p 0.412 0.965 0.107 0.443 0.503 0.435 0.308 

N 15 15 15 15 15 15 15 

ESR r 0.074 -0.260 -0.526 -0.077 -0.218 -0.488 -0.540 

p 0.820 0.415 0.079 0.812 0.497 0.108 0.070 

N 12 12 12 12 12 12 12 

Il-6 r -0.382 -0.430 0.091 0.212 -0.406 -0.055 0.006 

p 0.276 0.214 0.803 0.556 0.244 0.881 0.987 

N 10 10 10 10 10 10 10 

Ferritin r -0.236 -0.168 0.057 0.196 -0.268 0.082 0.079 

 p 0.398 0.550 0.840 0.483 0.334 0.771 0.781 

 N 15 15 15 15 15 15 15 

D-Dimer r -0.211 -0.086 -0.225 0.111 0.129 0.007 -0.025 

 p 0.451 0.761 0.420 0.694 0.648 0.980 0.930 

 N 15 15 15 15 15 15 15 

Fibrinogen r -0.129 0.000 -0.165 -0.020 -0.298 0.113 0.205 

 p 0.647 1.000 0.556 0.943 0.280 0.689 0.463 

 N 15 15 15 15 15 15 15 

Tryg-Index r 0.063 -0.363 0.218 0.225 -.595* -0.332 -0.336 

 p 0.825 0.184 0.435 0.420 0.019 0.226 0.221 

 N 15 15 15 15 15 15 15 
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Suppl. Table 4. Correlation analysis between blood values and fatty acids Group 2 at T0  

 

 

 

 

 

 

Group 2       

 Blood values a T0  LA  AA  ALA  EPA DPA DHA  O3I 

CPR 
 

r -0.157 0.186 -0.004 0.238 -0.007 0.191 0.286 

p 0.576 0.508 0.990 0.393 0.980 0.495 0.302 

N 15 15 15 15 15 15 15 

ESR r 0.108 -0.020 0.175 -0.134 -0.207 0.022 -0.121 

p 0.714 0.946 0.550 0.647 0.478 0.940 0.681 

N 14 14 14 14 14 14 14 

Il-6 r -0.148 0.482 0.093 -0.259 0.262 0.296 0.296 

p 0.751 0.274 0.842 0.574 0.571 0.518 0.518 

N 7 7 7 7 7 7 7 

Ferritin r 0.044 -0.214 0.352 -0.319 -0.003 -0.121 -0.236 

 p 0.887 0.482 0.238 0.288 0.993 0.694 0.437 

 N 13 13 13 13 13 13 13 

D-Dimer r 0.157 0.221 0.207 0.061 0.038 0.302 0.254 

 p 0.576 0.428 0.460 0.830 0.894 0.274 0.362 

 N 15 15 15 15 15 15 15 

Fibrinogen r -0.050 -0.165 0.249 -0.011 -0.115 -0.335 -0.275 

 p 0.858 0.557 0.370 0.968 0.683 0.222 0.321 

 N 15 15 15 15 15 15 15 

Tryg-Index r -0.275 -0.398 0.044 0.051 -0.181 -0.508 -0.301 

 p 0.342 0.159 0.880 0.863 0.536 0.064 0.296 

 N 14 14 14 14 14 14 14 



129 
 

Suppl. Table 5. Correlation analysis between blood values and fatty acids Group 1 at T2  

 

 

 

 

 

Group 1       

 Blood values a T2  LA  AA  ALA  EPA DPA DHA  O3I 

CPR 
 

r -0.049 -0.054 -0.053 0.323 -0.018 -0.197 -0.161 

p 0.863 0.849 0.852 0.240 0.949 0.482 0.566 

N 15 15 15 15 15 15 15 

ESR r -0.227 0.019 0.227 .526* 0.220 0.095 0.134 

p 0.416 0.945 0.416 0.044 0.430 0.736 0.634 

N 15 15 15 15 15 15 15 

Il-6 r 0.433 0.000 0.187 -0.124 -0.310 -0.124 -0.124 

p 0.107 1.000 0.506 0.660 0.262 0.660 0.660 

N 15 15 15 15 15 15 15 

Ferritin r -0.353 0.427 0.164 0.327 0.425 .516* .524* 

 p 0.197 0.112 0.560 0.235 0.114 0.049 0.045 

 N 15 15 15 15 15 15 15 

D-Dimer r 0.004 0.271 -0.190 .532* 0.247 0.146 0.161 

 p 0.990 0.328 0.497 0.041 0.376 0.603 0.567 

 N 15 15 15 15 15 15 15 

Fibrinogen r -0.329 0.339 0.474 0.342 0.375 0.232 0.284 

 p 0.232 0.216 0.074 0.212 0.168 0.405 0.305 

 N 15 15 15 15 15 15 15 

Tryg-Index r -0.231 -0.262 0.100 -0.148 -0.116 -0.020 -0.026 

 p 0.427 0.366 0.735 0.614 0.692 0.946 0.929 

 N 14 14 14 14 14 14 14 
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Suppl. Table 6. Correlation analysis between blood values and fatty acids Group 2 at T2  

IL-6 correlation with FA was not possible to conduct due to low number of available values.  

 

 

 

 

 

 

Group 2       

 Blood values a T2  LA  AA  ALA  EPA DPA DHA  O3I 

CPR 
 

r .516* 0.141 -0.059 -0.192 -0.133 -.603* -0.167 

p 0.049 0.615 0.835 0.493 0.636 0.017 0.551 

N 15 15 15 15 15 15 15 

ESR r -0.058 -0.205 0.052 -0.240 -.600* -0.447 0.243 

p 0.839 0.464 0.853 0.390 0.018 0.094 0.384 

N 15 15 15 15 15 15 15 

Ferritin r 0.156 -0.217 0.286 0.472 -0.016 -0.178 0.181 

 p 0.579 0.437 0.301 0.076 0.954 0.527 0.518 

 N 15 15 15 15 15 15 15 

D-Dimer r -0.174 -0.035 0.218 -0.483 -0.440 -0.301 0.405 

 p 0.552 0.905 0.455 0.080 0.115 0.295 0.151 

 N 14 14 14 14 14 14 14 

Fibrinogen r 0.145 0.116 -0.091 0.001 -0.099 -0.317 -0.048 

 p 0.620 0.694 0.758 0.997 0.736 0.270 0.869 

 N 14 14 14 14 14 14 14 

Tryg-Index r 0.191 -0.134 -0.098 0.043 0.004 -0.298 -0.102 

 p 0.495 0.634 0.729 0.879 0.990 0.280 0.718 

 N 15 15 15 15 15 15 15 
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