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A B S T R A C T   

The quality of fresh food of animal origin, as meat, fish, dairy products, and eggs, is pivotal for consumers and 
producers; however, due to the action of microorganisms, enzymes, and oxidation during storage, fresh foods are 
subject to spoilage. Chemical and sensory parameters are shelf life indicators requiring innovative evaluation 
methods, as those currently used, are expensive, laborious and rather technical. E-sensing devices, overcome 
many of these drawbacks. This paper overviews the shelf life assessment of fresh food of animal origin by e- 
sensing. The fundamentals of electronic eye, electronic nose, electronic tongue and data analysis are reviewed in 
the first part, whereas their application for shelf life evaluation, considering them individually or in combination 
by data fusion, are considered in the second part.   

1. Introduction 

Food shelf life represents a complex problem with a still significant 
knowledge gap to be covered. Indeed, the loss of some quality charac
teristics could lead to the end of the product marketability, but not 
necessarily to the loss of hygienic, sensory, or nutritional characteristics. 
In addition, the shelf life of a perishable product can only be referred to a 
given environmental and production situation. Thus, talking about food 
shelf life, all the factors involved should be considered. Consequently, in 
a pivotal book (Piergiovanni & Limbo, 2010) shelf life is defined as “The 
period of time which corresponds – under defined circumstances (packaging, 
transport, storage conditions and climate) – to an acceptable decrease in 
product quality”. 

The factors influencing the shelf life are mainly the food product with 
its intrinsic quality characteristics, the packaging, and the environment - 
transport, storage conditions and climate. They contribute to the change 
of sensory, chemical, physical, and/or microbiological properties of the 
product (Class, Kuhnen, Rohn, & Kuballa, 2021). These properties can 
be assessed by target analytical evaluation of external attributes (from 
color to taste and flavor), and internal factors related to chemical, 
biochemical, and microbiological changes resulting in nutritional and 
safety decay (Lakshmi et al., 2017). Conventional target methods 
applied for the evaluation of food shelf life are time-consuming, labor 
demanding, expensive, and applicable only for off-line control. On the 
contrary e-sensing techniques are designed to give real time 

information, overcoming cost and time associated with conventional 
laboratory methods or related to human involvement, as in the case of 
traditional sensory analysis (Yakubu, Kovacs, Toth, & Bazar, 2022). The 
possibility of rapid and non-destructive analysis is particularly relevant 
in the current food market, characterized by an increased international 
trade of fresh food, together with the need of effective controlled 
product in an environmentally sustainable vision. Thus, the application 
of more advanced quality control technologies has become a key issue 
(Palumbo et al., 2022) which the scientific and industrial stakeholders 
are looking to face. 

Therefore, this review overviews the application of e-sensing systems 
for the shelf life assessment of fresh food of animal origin. The paper 
aims to synthetize the fundamentals of electronic eye (e-eye), nose (e- 
nose) and tongue (e-tongue) and required data analysis. Subsequently 
the applications of e-sensing for shelf life assessment in the last ten years, 
considering each technique individually or in combination, are consid
ered and some conclusion and future perspective are drawn. 

2. E-sensing system 

As shelf life assessment should allow an accurate, but rapid, deter
mination of defined compounds, with little or no sample pretreatment 
and without the use of reagents, e-sensing systems are among the ap
proaches resulting interesting in this context. 

E-eye, e-nose and e-tongue designed to mimic the human senses, can 
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be useful for real time evaluation of fresh food, allowing the sample 
pretreatment reduction. The approaches are intended for the evaluation 
of the quality parameters, related to sensory characteristics, or for the 
quantification of specific analytes. 

With regard to e-eye, a number of visual system could be considered, 
colorimeters are traditionally applied to objectively define the color of 
food, while the use of e-eye by computer or mobile phones has rapidly 
emerged in the last years; for the e-nose and e-tongue, a- or partially- 
specific sensor arrays are applied to analyze volatile compounds or 
liquid samples (Fig. 1). 

Compared to traditional analytical methods (microbiological, 
chemical, physical and sensory), e-sensing systems have some peculiar 
characteristics since they are rapid, simple, objective, versatile and 
potentially useful for at-line or on-line applications. Furthermore, these 
techniques are considered environmentally friendly since do not require, 
or minimally require, the use of chemical reagents and sample prepa
ration (Tufvesson, Tufvesson, Woodley, & Börjesson, 2013). 

A further advantage, when considering e-eye and e-nose, is linked to 
economic aspects. Yavuzer (2021) and Castrica et al. (2021) highlighted 
the possibility of developing tailored made e-noses with cost lower than 
150 $. Similarly, e-eye hardware, i.e., two digital cameras equipped with 
an illumination set, could be easily implemented on a food production 
line with a cost of around 500 $ (Fan et al., 2020). To the hardware costs, 
software development should be added, which cost is highly dependent 
on the graphical-user- interface and the model complexity, thus more 
difficult to estimate. However, it is plausible that e-sensing systems will 
be cheaper then microbiological, chromatographic, or chemical anal
ysis, for which not only the investment in hardware and software, should 
be considered but also reagents and sample depletions. 

The main advantages and characteristics of e-sensing systems are 
summarized in Fig. 2. 

2.1. E-eye 

The visual appearance of food concerns visually perceived structure - 
including color, surface texture properties, and morphological features – 
affected by physical, chemical, microbiological, and sensorial changes 
which are indicators of product quality, i.e., with the estimation of 
product shelf life. 

Among the characteristics determining the perceived food quality, 
color plays a pivotal role. Color results from the interaction between the 
incident light and the object in the visible electromagnetic region, i.e., 
from 400 to 700 nm (Cairone, Carradori, Locatelli, Casadei, & Cesa, 
2020). 

The science which enables to objectively describe and quantify the 
human color perception is colorimetry (Fan, Li, Guo, Xie, & Zhang, 

2021). In particular, the objective determination of food color, to which 
we will refer as e-eye, can be obtained by colorimeters, spectropho
tometers, scanners and digital cameras. 

Colorimeters (Fig. 2a) are the most used instruments and, nowadays, 
could be considered a traditional approach to food characteristics 
evaluation. Even if colorimeters are extensively applied for food quality 
analysis, they permit to analyze no more than few square centimeters at 
a time, thus leading to results not always representative of heteroge
neous food surfaces. 

Other well-established systems are the spectrophotometers that 
measure color by recording the light transmitted or reflected by a 
product, resulting in a spectrum in the visible range (Pathare, Opara, & 
Al-Said, 2013). 

In the recent years, digital image colorimetry (DIC) made inroads as 
e-eye color analyzers. Scanners, digital cameras, and mobile phones are 
used to acquire information and store them as digital images (Fan et al., 
2021) (Fig. 2a). Digital images could describe both macroscopic (Grassi, 
Casiraghi, & Alamprese, 2018) and microscopic (Ong et al., 2020) 

Fig. 1. Schematic illustration of e-sensing systems.  

Fig. 2. Advantages and characteristics of e-sensing systems.  
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features, acting as an e-eye. In this manuscript the assessment of food 
product external features will be described, whereas the microscopic 
appearance assessment is out of the scope of this review. 

In DIC the color information is collected by the image sensors, which 
quantify the received primary color intensity, and convert the optical 
signal into an electrical one. Among the type of commercial sensors, 
available at RadhaKrishna, Govindh, & Veni (2021), charge-coupled 
devices (CCDs) are the most used to convert an optical image into 
electrical signal, being highly sensitive photon detectors. The CCD is 
divided up into light-sensitive small areas (a.k.a. the pixels), each acting 
like a bucket for electrons. During the exposure, each pixel fills up with 
electrons in proportion to the amount of light that enters it. The CCD 
takes this input and converts it into an electronic signal. Finally, an 
analog-to-digital converter turns the signal into digital information. 

Flatbed scanners are widely available and, thus, the most used. In 
this type of scanners, the light, generated by light source on a moving 
arm, reaches the product understudy positioned on a glass surface, then 
it is reflected to a photosensitive element, such as a CCD, by a series of 
mirrors and lenses (Garcia-Rojo et al. 2019). 

The combination of a scanner geometry with a system of optics re
sults in a digital camera. The digital cameras are part of the e-eye sys
tem, together with an illumination system, a frame grabber and a 
processor (Fig. 2a). Though more difficult to design for the specific 
application, e-eye are adaptable to a wide array of cases. The quality of 
an e-eye system is determined by the electronics, both camera and frame 
grabber, and by the illumination system. Depending on the application, 
CCDs could have different architectures (linear, interlinear and frame- 
transfer) and resolution (number and size of pixels). Together with 
that, the setup of a properly designed illumination system improves the 
analytical precision and reduces the artifacts. Lighting can be arranged 
according to two types of design: circular design (or ring illuminator) for 
flat samples or a scattered design (diffuse illuminator) for roundish and/ 
or reflective objects. 

Most image detectors provide information in RGB coordinates, 
deriving from a cubic color space composed by three perpendicular axes 
(red, R: green, G; and blue, B), each of them ranging from 0 to 255. The 
coordinates vary from black [0, 0, 0] to white [255, 255, 255]. If the 
measured color should be converted in other color spaces, such as CIE
Lab format, the illumination must be standardized to obtain reliable 
results (Leon, Mery, Pedreschi, & Leon, 2006). The CIELab space is 
recognized as the best system for food, able to approximately describe 
the human perception of color. Indeed, it enables to obtain information 
about the lightness (L*), and the unique colors (a*, from green to red; 
and b*, from blue to yellow) perceived by the human eye (McLaren, 
1976). 

As said before, color is crucial, but to characterize the appearance of 
food, more complex features are involved. E-eye systems analyze surface 
texture, going beyond what perceived by the human eye (Jackman & 
Sun, 2013), and represent features such as graininess, smoothness, and 
roughness. Lastly, morphological features are important to describe 
fresh products of animal origin in terms of their structure, even if it is 
difficult to discuss all the possible features to be measured as they 
depend on the sample understudy and on the fixed goal. In any case, 
they encompass simple features, such as area, aspect, and diameter, and 
more peculiar ones, i.e., roundness and hole presence. Typical 
morphology features that can be calculated are described by Du & Sun 
(2004). 

2.2. Electronic nose 

The e-nose device originated in the work of Persaud & Dodd (1982) 
and developed in a tool allowing the detection of odors, simple and 
complex, by an array of a-specific or partially specific gas sensors that 
mimic human olfactory perception (Gardner & Bartlett, 1994). 

Basically, this device consists of three parts: a sampling system for 
handling samples during analysis, a detecting system composed by the 

sensor array and a computer for the acquisition and the processing of 
data (Fig. 1b) (Munekata et al., 2023; Tudor Kalit, Marković, Kalit, 
Vahčić, & Havranek, 2014). 

The gas sensors represent the heart of the system, and they can be 
classified into several types. Few technologies are applied in commercial 
e-noses: the metal oxide semiconductor sensors (MOS), the metal oxide 
semiconductor field-effect transistor sensors (MOSFET), the conducting 
polymers (CP), the acoustic sensors: surface acoustic wave (SAW) and 
bulk acoustic wave (BAW); the most common bulk acoustic wave sen
sors are the quartz microbalance (QMB) (Sujatha, Dhivya, Ayyadurai, & 
Thyagarajan, 2012; Wojnowski, Majchrzak, Dymerski, Gębicki, & 
Namieśnik, 2017a). In the work of Ghasemi-Varnamkhasti, Mohtasebi, 
Siadat, & Balasubramanian (2009) the structure of the different types of 
sensors is well schematized. 

MOS sensors are the most widely applied in the commercial e-noses; 
they measure changes in metal oxide conductivity due to reduction/ 
oxidation reactions taking place on the sensor surface (Wojnowski, 
Majchrzak, Dymerski, Gębicki, & Namieśnik, 2017a; Berna, 2010). 

Commercial devices are typically handy, compact, and exploitable in 
different fields (food, medical, pharmaceutical, and environmental). 
Among them, PEN3 e-nose, produced by Airsense Analytics (Schwerin, 
Germany), is characterized by a particular sampling strategy which al
lows to operate in laboratory or in mobile applications as well as online 
for process control. This device consists of 10 MOS sensors, and it is 
equipped with the WinMaster software for data collection and process
ing (Airsense Analytics, 2023). 

Cyranose320 is another commercial device produced by Sensigent 
(Baldwin Park, California, USA). It is a fully integrated portable tool, 
specifically designed to detect and identify complex mixture of volatiles 
that constitute aromas, odors, fragrances. Cyranose320 is used in several 
industries, including food ones; it consists of 32 CP sensors blended with 
carbon black composite (Sensigent – Intelligent Sensing Solution, 2023). 

In Italy, a research platform has given rise to the development of a 6 
MOS sensors commercial tool named EOS912 (SACMI, Imola, Italy). 
This e-nose operate in any external environment or weather condition, 
and can be powered by solar panels combined with fuel cells and a 
backup battery; this device is able to ensure good performance in 
absence of a traditional power supply and in the absence of sunlight up 
to 24–48 h (Sacmi, 2015). Furthermore, a company named Nano Sensor 
Systems (Brescia, Italy), develops innovative e-nose devices, based on 
nanochemical sensors, fully customizable according to customer needs. 
The main application sectors are agri-food, environmental, security and 
domestic automation (Nano Sensor Systems, 2023). 

The HERACLES (Alpha MOS, Toulouse, France) e-nose is dedicated 
to the analysis of chemical molecules that make up the odor. This device 
is based on ultrafast chromatography technology and consists of two 
capillary columns of different polarity and two flame ionization de
tectors. The AroChemBase software is designed to help the identification 
and the characterization of the detected molecules by providing a list of 
possible compounds sorted by relevance index (Alpha-MOS, 2023). 

Most of the commercial e-noses are not specifically designed for food 
industry applications. Therefore, some researchers tested specific de
vices for food matrices. Food Sniffer® (Redwood City, USA) is a com
mercial and portable e-nose developed for assessing meat, poultry and 
fish freshness. This device can be connected wirelessly to a smartphone 
via an app; it measures gas levels indicating in few seconds the storage 
condition of the products via a traffic light system: green-fresh, yellow- 
partially spoiled, red-spoiled. As it is easy to use, this device is intended 
for the final consumers (FOODSniffer (2023)). 

The “Mastersense” e-nose is a portable and simplified prototype 
system based on 4-MOS sensors and implemented with a classification 
algorithm to classify meat and fish according to their freshness. An ad 
hoc cloud platform has been implemented to store the data collected by 
off-line or on-line procedures (Grassi, Benedetti, Opizzio, di Nardo, & 
Buratti, 2019). 

Recently home-made e-nose systems have been developed for the 
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assessment of food and beverage quality. Low-cost e-noses, consisting of 
an array with three-twelve MOS sensors, have been applied to assess the 
aromatic fingerprint of beer, wine, saffron, fruit and fruit juice (Rasekh 
& Karami, 2021; Wei, Zhang, Wu, Wei, & Chen, 2018; Kiani, Minaei, & 
Ghasemi-Varnamkhasti, 2016a; Macías, et al., 2013; Viejo, Fuentes, 
Godbole, Widdicombe, & Unnithan, 2020). These tailored made in
struments permits to highly reduce the hardware costs but are limited in 
the ad hoc use. 

2.3. Electronic tongue 

E-tongue was developed in the 90s when prof. Toko proposed a 
system able to imitate the sense of taste, called "taste sensor" (Toko, 
1995). An e-tongue is generally composed by a sensor array that reacts 
in contact with liquid samples, a signal acquisition system, and a pattern 
recognition system which identify compounds based on their taste 
(Fig. 1c) (Wadehra & Patil, 2016; Vlasov, Legin, Rudnitskaya, Di Natale 
& D’Amico, 2005). 

As for the e-nose, sensors are the heart of e-tongue system and they 
are classified into electrochemical (voltammetric, potentiometric, 
amperometric, impedimetric, and conductimetric), optical and enzy
matic (biosensors) (Ciosek & Wroblewski, 2007). Usually, e-tongue 
systems consist of up to ten sensors, the most widely used are the 
potentiometric and voltammetric ones. 

Voltammetric e-tongues are often used for multi-component mea
surement, such as chloride, nitrite and nitrate content in meat (Campos 
et al., 2010; Labrador et al., 2010), however these devices are applicable 
only to samples in which oxidation and reduction reactions occur (Jiang, 
Zhang, Bhandari & Adhikari, 2018). 

Potentiometric e-tongues are based on polymeric membrane ion- 
selective electrodes (ISE) and ion-selective field-effect transistors 
(ISFET). In these devices, the potential difference under no current flow 
condition is measured (Nery & Kubota, 2016; Cosio, Scampicchio, & 
Benedetti, 2012). Potentiometric sensors are assembled in the two 
commercial e-tongue currently available. The first one, built by Toko 
(Toko, 1996) is TS-5000Z Taste Sensing Systems (Intelligent Sensor 
Technology Inc., Atsugishi, Kanagawa, Japan). It consists of sensors 
composed by lipid-polymeric membranes that selectively respond to 
specific tastes and aftertastes (Tahara and Toko, 2013). This system is 
mainly used for food (Ujihara, Hayashi & Ikezaki, 2013; Zhang, Zhang, 
Meng, Li, & Ren, 2015) and pharmaceutical (Akitomi et al., 2013) 
products. Astree II (Alpha MOS, Toulouse, France), the second e-tongue 
available on the market, is composed of seven chemically sensitive 
field-effect transistor (ChemFET) sensors able to recognize different 
tastes. The applications of this device focus on pharmaceutical (Woertz, 
Tissen, Kleinebudde, & Breitkreutz, 2011) and food field, for quality 
control (Tian, Wang & Zhang, 2013), taste assessment (Jung et al., 
2017), and process monitoring (Yan, Ping, Weijun, & Haiming, 2017)). 

Other two e-tongues are available on regional market; however, the 
literature concerning their applications is very scarce. These two devices 
are: the Multiarray Chemical Sensor (McScience Inc., Suwon, Korea), 
build of polyvinylchloride and polyurethane membranes (Ciosek & 
Wroblewski, 2007), and the Sensor System (St. Petersburg, Russia) 
comprised of seven potentiometric ion-selective sensors (Zakaria et al., 
2011). Recently, a lot of progress has been made in the study of sensor 
miniaturization to develop a small portable e-tongue by using wire or 
screen-printed electrodes for the analysis of wine (Giménez-Gómez 
et al., (2016)), drinking water (Ouyang, Zhao, & Chen, 2013) and beer 
(Garcia-Breijo et al., 2011), but the way to their real life application is 
longer if compared with the miniaturized e-eye and e-nose systems. 

3. Data analysis associated with e-sensing systems 

Multivariate data analysis techniques are the same for e-eye, e- 
tongue and e-nose, the main differences consist in data type and, thus, in 
the preparation strategies required from the different data types. Prior to 

multivariate data analysis, pre-processing strategies must be applied to 
profit of the retained information at maximum. Subsequently, after a 
proper data exploration, prediction models could be built to assess a 
specific compound (regression models) or to predict a categorical 
characteristic (classification models). 

It should be kept in mind that robust validation procedures are 
mandatory to guarantee reliable and reproducible results. To the goal, 
models must always be tested for prediction ability, thus when devel
oping a model, this should be firstly calibrated with a comprehensive set 
of data, and the validated by an independent test set composed by 
samples not used in the calibration phase (Grassi et al., 2023). For a 
comprehensive overview of Chemometric applied to food analysis 
please refer to Marini (2013). 

3.1. E-eye 

The data collected by e-eye need several steps of analysis to be 
optimized to meet the defined purpose (Fig. 3). The first step includes 
the image acquisition followed by preprocessing strategies that includes 
the reduction/removal of noise and undesired distortions (second step). 
The third step is image segmentation aiming at isolating regions of in
terest (ROI) and extracting statistical data form object or ROI (Gunase
karan, & Ding, 1994). The strategy, or combination of strategies, 
implemented for image segmentation are pivotal for the accuracy of 
image analysis, as this operation will affect the data on which statistic 
will be computed. There are different ROI segmentation techniques 
which can be grouped in thresholding, edge-based, and region growing 
methods (Sonka Hlavac, & Boyle, 1993). Thresholding is the simplest 
approach, and it is based on the intensity of the recorded colors, as single 
channel, or after grey scale transformation. Edge-based segmentation 
methods detect discontinuities in the color intensity or in the texture of 
an image, resulting in borders or edges. Differently from the previously 
described methods, the region-growing methods construct regions using 
homogeneity as the main segmentation criterion (Sonka et al., 1993). 

The image segmentation will lead to a ROI that can be analyzed as a 
boundary or as a region (fourth step). In case the final aim is to extract 
color or texture features the segmentation process will lead to a region, 
from which quantitative information, such as pixel intensity or co- 
occurrence, will be extracted. Whereas boundary representation is 
used for morphological analysis, such as the extraction of size and shape 
features. To examine in the dept the various algorithms used for the 
fourth step refers to Meenu et al. (2021) and Zheng, Sun, & Zheng, 
(2006). 

The segmented images can further be processed by modelling stra
tegies based on food quality features thanks to univariate and multi
variate statistical methods or machine learning techniques. Univariate 
statistical methods encompass linear regression, Pearson correlation and 
Welch’s t-test (Russ, 2006), whereas multivariate statistical models 
include, among others, linear discriminant analysis (LDA), quadratic 
discriminant analysis (QDA), partial least square (PLS) regression 
(Prats-Montalbán, de Juan, & Ferrer, 2011). More complex is the use of 
machine learning strategies, such as support vector machine (SVM) with 
linear or nonlinear kernels, and artificial neural networks (ANN) (Lin, 
Ma, Wang, & Sun, 2022). 

3.2. E-nose and e-tongue 

The steps required for e-nose and e-tongue data analysis are super
imposable, thus they will be discussed together. Both analyses generate 
an output as the response of the sensor array interaction with the 
compounds (semi-independent variables) which is combined with a set 
of dependent variables constituted by the a-priori information about 
odor/taste classes. The response of the sensor arrays consists of a set of 
curves, generated from the changes in the sensor array, where the x-axis 
is the time of analysis and the y-axis the voltage/resistance/conductiv
ity. These structures, i.e., the pattern vectors, should a priori undergo to 
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preprocessing to enhance relevant features and reduce possible instru
mental and analytical noise. An inappropriate data extraction and pre
processing can affect the subsequent multivariate data analysis. The 
features that are usually considered are the signals at a predefined time, 
but in some cases the pattern vectors, generated by the considered 
sensors, can be directly concatenated. In the latter case principal 
component analysis (PCA) may be applied as dimensionality reduction 
strategy to select relevant variables. In both cases, difference in sensor 
sensitivity may have a scaling effect, thus normalization strategies are 
the most common applied preprocessing techniques; some standard 
normalization techniques are discussed by Scott, James, and Ali (2006). 
After pretreatment, data are generally explored by PCA. It allows the 
inspection of similarities and differences between samples and their 
relationship with the measured variables (Bro & Smilde, 2014). 
Furthermore, clustering algorithms (CA), belonging to the unsupervised 
pattern recognition methods, are applied to split the samples into clus
ters. There are different families of clustering methods, according to the 
portioning strategies applied. Hierarchical methods start by the 
grouping in small clusters, then enlarged by further steps, to finally 
generate a dendrogram representation of distances. Partitioning 
methods, such as k-means clustering, start from big groups, then reduced 
in dimension by optimizing a feature, such as the distance within-group. 
The main problem is the a priori definition of the desired/expected 
number of clusters (Grassi et al., 2023; Scott et al., 2006). The unsu
pervised pattern recognition methods are useful for data representation, 
data dimensionality reduction and/or to define groups. Whereas, when 
the aim is to develop models for the classification of samples based on 
quality categories, classification algorithms or classifiers must be 
implemented. This is the main difference: the supervised methods 
require some “a priori” information about the sample, such as a quality 
class or a measured quality trait. Classification can be performed by 
discriminant or class-modeling techniques. K-nearest-neighbor (kNN), 
PLS-discriminant analysis (PLS-DA), and LDA are some of the most used 
algorithms for discriminant analysis. Instead, class-modeling techniques 
may include soft independent modeling of class analogy (SIMCA) and 
unequal class modelling (UNEQ). In recent time, the algorithm most 
used as classifier for e-nose and e-tongue data handling is ANN. ANN 
simulates the working flow of the brain by using a collection of 
neuron-like entities forming networks on which the classification is 
based. Shaffer, Rose-Pehrsson and McGill (1999) compared several 
pattern recognition systems (Probabilistic neural networks (PNN), 
learning vector quantization (LVQ) neural networks, back-propagation 

ANN (BP-ANN), SIMCA, Bayesian linear discriminant analysis (BLDA), 
Mahalanobis LDA (MLDA), and the kNN) and proposed a set of re
quirements that an ideal classification system should have. In any case, it 
is important to follow a correct road map when developing and vali
dating a classifier, including correct sampling procedures, meaningful 
preprocessing and reduction strategies, robust validation procedures, 
and evaluation of the model performance criteria (Grassi et al., 2023). 

4. E-sensing application 

4.1. E-eye 

Meat color can be influenced by many intrinsic and extrinsic factors 
that are interrelated and, finally, influence consumers’ perception of 
quality and freshness (Tomasevic, Djekic, Font-i-Furnols, Terjung, & 
Lorenzo, 2021). The use of colorimetry is not new in the meat sector for 
shelf life evaluation and it has been widely applied as reported by 
Gurunathan, Tahseen, & Manyam, 2022 and Roshanak et al. (2023). 
More recently, e-eye systems have been investigated and applied in the 
meat industry from carcass composition to sensory quality prediction 
passing by chemical composition and quality defect evaluation (Mod
zelewska-Kapituła & Jun, 2022). E-eye in the visible range were suc
cessfully applied for the determination of fresh pork quality defects 
(Chmiel, Słowiński, Dasiewicz, & Florowski, 2016), fat distribution in 
beef and lamb (Stewart et al., 2021), and eating qualities of beef 
(Jackman, Sun, Du, & Allen, 2009). These studies are only some of the 
many setting the basis for meat quality evaluation. However, a reduced 
number of them focuses on the evaluation of meat products during their 
shelf life (Table 1). Different studies applied e-eye systems to study the 
effect of the packaging system - packaging material and environmental 
conditions - on the color stability and the surface texture changes during 
beef shelf life (Nassu et al., 2012; Uboldi Lamperti, & Limbo, 2014). In a 
first study, Arsalane et al. (2018) constructed a database of eighty-one 
images, collected from beef steaks stored at 4 ± 1 ◦C up to nine days, 
from which they extrapolated hue, saturation, and intensity (HSI) values 
to build an SVM model for freshness classification. In the subsequent 
study (Arsalane et al., 2019) the color information was merged with 
surface texture features - calculated by fast wavelet transform - to 
develop an algorithm based on PNN to classify beef images in two 
freshness classes (fresh or spoiled). The strength of the studies is the 
transfer of the developed methods to a digital signal processor (DSP), 
thus providing portable tools to identify product freshness directly in the 

Fig. 3. Fundamental steps for e-sensing data analysis.  
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Table 1 
Recent application of e-eye systems for shelf life evaluation of fresh food of animal origin.  

Food Matrix Aim of the study E-eye system model Parameters Reference 

Meat     
Pork Detection of PSE in M. semimembranosus Konica Minolta CM2600d spectrophotometer CIELab color space Chmiel et al. (2016) 

Development of an on-line detection 
system for meat freshness 

German AVT F-038 industrial camera, a light unit, a 
computer and a software 

Color Region Ratio Xiao et al. (2014) 

Chicken Development of an on-line detection 
system for chicken freshness 

CANON SX260 camera, an illumination source, a 
computer, and a software 

Texture features extracted 
from RGB, HSI and CIELab 
color spaces 

Taheri-Garavand 
et al. (2019) 

Evaluation of packaging systems on 
quality characteristics of chicken leg meat 

HunterLabMiniScan colorimeter EZ 4500 CIELab color space Gurunathan et al. 
(2022) 

Beef Effect of CO2 and O3 pretreatments on the 
quality of vacuum packaged beef meats 

Konica Minolta colorimeter CR 310 CIELab color space Lyu et al. (2016) 

Effects of of low O2 master bag in beef 
patties shelf life 

CanonScan LiDE 200 flat-bed scanner CIELCh color space Uboldi et al. (2014) 

Assessment of safety and physicochemical 
properties of hamburger treated by cold 
plasma 

Canon Power Shot EOS 1000D camera CIELab color space Roshanak et al. 
(2023) 

Development of a rapid model for beef 
meat freshness prediction and 
identification 

GigEPRO camera, two illumination source at 45◦, a 
computer and a software 

HSI color space and surface 
texture features 

Arsalane et al. (2018) 

Assessment of fresh and spoiled meat GigEPRO camera, two illumination source at 45◦, a 
computer and a software 

HSI color space Arsalane et al. (2019) 

Evaluation of packaging affects on the 
colour stability of vitamin E enriched 
meat 

Canon EOS Digital Rebel, two illumination source at 
45◦, a computer and a software 

Appearance, RGB lean colour, 
% surface discolouration 
(RGB) 

Nassu et al. (2012) 

Fish     
Sea bream Assessment of freshness by eyes,and gills Canon EOS kiss x4 camera, illumination chamber, 

computer hardware, and software 
CIELab color space Dowlati et al. (2013) 

Snappers Assessment of freshness by eyes in 
differenet conditions 

Nikon D300 camera, two illumination source at 45◦, a 
computer and a software 

CIELab color space Balaban & Alçiçek 
(2015) 

Red mullet Assessment of freshness by eyes, gills, and 
skin 

Canon PowerShot A70, four illumination source at 
45◦, a computer and a software 

RGB color space Tappi et al. (2017) 

European hake Assessment of freshness by eye chromatic 
and morphological characteristics 

Nikon D7000 camera, four parallel illumination 
source, a computer and a software; Next Engine 3D 
scanner 

RGB color space and 3D eyes 
profile 

Rocculi et al. (2019) 

European 
Seabass 

Assessment of freshness by eyes, gills, and 
skin 

Nikon D300 digital camera (18–200 mm), 
illumination system with a polarizing sheet, color 
reference 

CIELab color space Erdağ & Ayvaz (2021) 

Salmon Assessment of freshness by eyes A digital camera and four lamps positioned below the 
fish 

RGB, CIELab, and HSI color 
spaces 

Jia et al. (2022) 

Tilapia Prediction of freshness indicators (TVB-N, 
TBA and TVC) by pupil and gill 

A digital camera and four lamps positioned below the 
fish 

RGB, CIELab, and HSI color 
spaces 

Shi et al. (2018a) 

Common carp Assessment of freshness CCD camera, four lamps with an arc acrylic plate, a 
computer and a software 

RGB color space Taheri-Garavand 
et al. (2020) 

Indian rohu Assessment of freshness by gills Nikon D90 CIELab and HSV color spaces Issac et al. (2017) 
Different fishes Assessment of freshness, remaining shelf 

life and number of days from catching 
Mobile phone RGB color space Suresh et al. (2021) 

Dairy products 
Vastedda PDO 

cheese 
Assessment of the effect of refrigerated 
storage on quality characteristics 

Konica Minolta colorimeter CR-310 CIELab color space Todaro et al. (2017) 

White turkish 
cheese 

Assessment of packaging effect on quality 
charcteristics during storage 

Konica Minolta colorimeter CR-410 CIELab color space Alwazeer et al. (2020) 

“Bryndza” sheep 
lump cheese 

Assessment of changes in production 
effect on quality charcteristics during 
storage 

Konica Minolta colorimeter CR-411 CIELab color space Štefániková et al. 
(2020) 

Lor whey cheese Evaluation of continuous type of UV light 
on quality parameters during shelf life 

Konica Minolta colorimeter CR-300 CIELab color space Urgu-Ozturk (2022) 

Crescenza cheese Evaluation of milk recombination in 
cheese manufacturing and storage 

Konica Minolta colorimeter CR-301 CIELab color space Alinovi et al. (2022) 

Fresh acid 
coagulated 
cheese 

Evaluation of quality parameters and shelf 
life ofcheese packed under modified 
atmosphere 

Konica Minolta CM3500d spectrophotometer CIELab color space Barukčić et al. (2020) 

Cow’s and goat’s 
fresh cheese 

Evaluation of hyperbaric storage on 
quality characteristics 

Konica Minolta CM2300d spectrophotometer CIELab color space Duarte et al. (2023) 

Yoghurt Assessment of packaging effect on quality 
charcteristics during storage 

Konica Minolta CM600d spectrophotometer CIELab color space Mikloskova et al. 
(2021) 

Smoked Cheddar Effect of storage time on calcium lactate 
crystals formation 

Nikon 5200 DCR number and distribution Rajbhandari et al. 
(2013) 

Effect of surface roughness and packaging 
tightness on calcium lactate crystals 
formation 

Nikon 5200 DCR number and distribution Rajbhandari & 
Kindstedt (2014) 

Mozzarella 
cheese 

Evaluation of modified governing liquid 
on shelf-life parameters 

Konica Minolta colorimeter CR-400 CIELab color space Huang et al. (2022) 

Comparison of different systems to study 
colorimetric quality parameters 

Different CCD or CMOS cameras, two lamps at 45◦

and 0◦, a computer and a software 
CIELab color space Minz & Saini (2021) 

(continued on next page) 
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supermarket and in real-time. 
An online detection system was also proposed by Xiao, Gao, and 

Shou (2014). They developed an innovative strategy based on color 
region ratio to identify freshness in samples of pork meat, according to 
the Chinese National Standard, reaching the 88% of accuracy. E-eye 
succeeded also in chicken meat freshness prediction (Taheri-Garavand, 
Fatahi, Shahbazi, & de la Guardia, 2019). To this end, 3000 images were 
acquired storing thirty skin chicken legs at 4 ◦C up to 13 days, from 
images color and texture features were extrapolated and used to develop 
an ANN model giving a regression coefficient (R) of 0.99 and a predic
tion error of 0.0025. 

Colorimetry and e-eye systems have been applied for freshness 
evaluation of whole fish, fish fillets and derived products. In particular, 
the e-eye system resulted highly reliable in the analysis of non- 
eviscerated fishes. Relevant studies were developed retrieving infor
mation by e-eye systems based on the evaluation of gill and eye color 
changes in sea bream (Dowlati et al., 2013), snappers (Balaban & Alçi
çek, 2015), Indian rohu (Issac, Dutta, Sarkar, 2017), red mullet (Tappi 
et al., 2017), tilapia (Shi et al., 2018a), European hake (Rocculi et al., 
2019), European seabass (Erdağ & Ayvaz, 2021), and salmon (Jia, Li, 
Shi, Zhang, & Yang, 2022) (Table 1). 

Issac et al. (2017) designed a robust method based on 144 Indian 
rohu samples to assess fish freshness with an accurate segmentation 
strategy and an optimal noise reduction. Taheri-Garavand, Nasiri, 
Banan, and Zhang, (2020) proposed a convolutional neural 
network-based method, with low complexity and high accuracy 
(98.2%), in the prediction of common carp (Cyprinus carpio) freshness 
from the changes occurring in the extracted skin features. However, the 
mentioned works did not correlate the freshness determined by image 
analysis with the related microbiological and chemical quality indexes. 
Interesting, in the work of Jia et al. (2022) the information retrieved 
from the analysis of salmon eyes images was used to build multiple 
regression models for the prediction of thiobarbituric acid (TBA), total 
volatile basic nitrogen (TVB-N), total viable counts (TVC), and K value, 
obtaining high determination coefficients (R2 >0.99), F value (from 
186.26 to 589.42), and low relative errors. Suresh, Vinayachandran, 
Philip, Velloor, and Pratap (2021) developed Fresco Pisces, a mobile app 
which enables to assess fish freshness and formaldehyde presence in 
fishes from an image of eye and gill acquire anywhere, even at the su
permarket, by a mobile phone. 

Regarding the visual appearance of dairy products, color, surface 
texture and morphology has been considered an indicator related to 
extended storage conditions and shelf life (Lukinac, Jukić, Mastanjević, 
& Lučan, 2018). 

In the dairy sector, colorimeters - especially tristimulus colorimeters 
- has been widely used for shelf life assessment of a large number of 
cheeses as classical control technique (Table 1). Color, by a spectro
photometer CM-600d (Konica Minolta, Tokyo, Japan), was used to 
evaluate changes in CIELab space during the storage of yoghurt packed 
in traditional or innovative packaging materials up to 42 days 
(Mikloskova, Witte, Joeres, & Terjung, 2021). 

Milovanovic et al. (2021) evaluated both an e-eye system and a 
portable colorimeter (CR-400, Minolta Co., Osaka, Japan) for color 
measurements of many milk products. The obtained results demon
strated that e-eye could replace traditional devices, i.e., colorimeters, 

with improved representativeness and accuracy for both liquid and solid 
products. Similarly, Minz, & Saini (2021) compared the performance of 
a spectrophotometer and five different cameras (two CCD and three 
complementary metal–oxide–semiconductor type image sensors) 
implemented in a e-eye for color determination in mozzarella cheese. 
They concluded that the two systems led to equivalent results, but the 
e-eye system - as already commented - easily allows the measurements 
over the entire mozzarella cheese surface. 

Kindstedt research group (Rajbhandari, Patel, Valentine, & Kind
stedt, 2013; Rajbhandari & Kindstedt, 2014) applied an e-eye to mea
sure calcium lactate crystals presence on surfaces of Cheddar cheese. 
Even if not harmful, their formation leads to quality loss and microbi
ological problems. The developed method permitted to identify the 
number of visible crystals, their growth rate, and shape during storage at 
1, 5 or 10 ◦C up to 30 weeks, and the area occupied by the crystals in 
respect to the cheese surface. 

Vasilev, Shivacheva, and Krastev (2021) acquired data about the 
spectral characteristics and the color digital images of white brined 
cheese and yellow cheese stored up to 14 days at 20–22 ◦C, relative 
humidity of 45%. The storage, in terms of days, of white brine cheese 
resulted well predicted (R2: 0.80) combining the color components, the 
spectral indices and the electrical conductivity features. 

Regarding eggs shelf life, e-eye systems were applied for the deter
mination of crack (Priyadumkol, Kittichaikarn, & Thainimit, 2017; Wu 
et al., 2018). A quite high accuracy (94%) was obtained by the 
fast-random-forest classifier applied to discriminate images acquired 
from cracked and intact white eggs by Priyadumkol et al. (2017). The 
strategy developed by Wu et al. (2018) performed similarly with an 
accuracy of 93% and 94% in testing and training sets, respectively. In 
this case, an SVM classifier was implemented to detect cracked brown 
eggs by transmission imaging. 

4.2. E-nose 

In the last decade, many works covered the e-nose application to 
predict freshness quality traits and/or spoilage of fresh food animal 
origin, since during their storage there is a significant release of volatile 
compounds due to cellular metabolism and to bacterial degradation 
processes. 

Table 2a summarizes e-nose applications for shelf life assessment of 
meat, fish, dairy products, and eggs. 

Considering the information reported in Table 2a MOS sensors are 
employed in about 60% of the reviewed papers, due to their advantages 
of being fast, highly sensitive and commercially available at a low price. 
In about 40% of the works, the evaluations were carried out using 
commercial devices, in all the other cases, homemade devices or pro
totypes, specifically developed for products of animal origin, were 
applied. 

As regards commercial e-noses applied on meat, the PEN2 system 
(Airsense Analytics, Schwerin, Germany), composed by 10 MOS sensors, 
has been used to predict microbiological and physical-chemical indices 
of beef samples stored at 2 ◦C for a maximum of 14 days (Hong, Wang, & 
Hai, 2012); the e-nose was used in combination with an enrichment and 
desorption unit to improve its performance by lowering the detection 
limit and increasing the selectivity. Prediction models for TVB-N 

Table 1 (continued ) 

Food Matrix Aim of the study E-eye system model Parameters Reference 

Milk and milk 
products 

Comparison of different systems to study 
quality parameters 

Konica Minolta colorimeter CR-400; Sony Alpha 
DSLR-A200 camera, four illumination source at 45◦, a 
computer and a software 

CIELab color space Milovanovic et al. 
(2021) 

Egg     
White egg Crack detection Apple iSight camera, one alogen lamp source, two 

LEDs 
Gray scale Priyadumkol et al. 

(2017) 
Brown egg Crack detection UI-2230ME-C CCD camera, an aluminum alloy box, 

illuminator and a compute 
RGB Wu et al. (2018)  
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content, microbial count and sensory scores were built by two NN 
regression techniques, generalized regression neural network (GRNN) 
and back propagation neural network (BPNN). 

The latest version of the same e-nose (PEN3) has been used in 
combination with headspace-gas chromatography-ion mobility spec
trometry (HS-GC-IMS) to study the volatiles of pork meat stored at 4 ◦C 

for 21 days and at − 2 ◦C for 28 days in modified atmosphere-packaged 
and air-packaged (Bassey et al., 2022a). The work reported the effec
tiveness of the system in determining the aromatic fingerprint evolution 
during storage, while the GC-IMS separated the volatiles liable for the 
characteristic flavor. 

In the study by Ramirez Soriano, Gómez, Iranzo, & Briones, (2018), 

Table 2 
Recent application of e-nose and e-tongue for shelf life evaluation of fresh food of animal origin.  

Food Matrix Aim of the study Device model Sensor type Reference  

a) E-nose applications 
Meat     
Pork Volatile evalutaion during 

storage 
PEN3 (Airsense) 10 MOS Bassey et al. (2022a)  

Shelf life assessment FOODsniffer Not indicated Ramírez et al. (2018)  
Discrimination and prediction of 
freshness 

PEN2 (Airsense) 10 MOS Hong et al. (2012)  

Freshness evaluation Prototype Colorimetric array Li et al. (2014) 
Chicken Freshness of refrigerated meat Heracle II & Prototype Ultrafast GC & 6 MOS, 2 PID Wojnowski et al. (2017b)  

Evaluation of fresh meat quality Prototype 3 MOS Raudienė et al. (2018)  
Freshness evaluation Home-made 8 not defined Tang & Yu (2020)  
Odor clustering during shelf life Home-made 4 MOS Al Isyrofie et al. (2022)  
Shelf life of fresh and frozen 
meat 

Home-made 8 MOS Mirzaee-Ghaleh et al. (2020)  

Evaluation of freshness in 
refrigerated conditions 

NST3320 (Applied 
Sensor) 

12 MOSFET & 10 MOS Hussein et al. (2021) 

Beef Discrimination and prediction of 
freshness 

PEN2 (Airsense) 10 MOS Hong et al. (2012)  

Beef quality detection MoLen (prototype) MOS Wijaya & Sarno (2015)  
Quality assessment of beef fillets LibraNose 

(Technobiochip) 
8 QMB Papadopoulou et al. (2013)  

Freshness determination Home-made 8 MOS Xiao et al. (2014)  
Detection of meat spoilage LibraNose 

(Technobiochip) 
8 QMB Kodogiannis (2017) 

Beef and fish Freshness inspection Home-made 8 MOS Hasan et al. (2012)  
Freshness assessment Mastersense (prototype) 4 MOS Grassi et al. (2019) 

Fish     
Shrimps Freshness evaluation Home-made 8 MOS Jiang et al. (2016)  

Quality estimation of Pacific 
white shrimps 

Shrimp-Nose 
(prototype) 

6 MOS, Temp & Humidity Srinivasan et al. (2020)  

Prediction of freshness Home-made 6 MOS Du et al. (2015) 
Fish Spoilage monitoring Impedimetric e-nose 7 nonofibers Andre et al. (2022)  

Freshness assessment Home-made 8 MOS Guney & Atasoy (2013) 
Rainbow trout Identification of spoilage Home-made 7 MOS Vajdi et al. (2019) 
Horse mackerel Freshness Testing Home-made 8 MOS Atasoy et al. (2015) 
Salmon Freshness assessment FOX4000 (Alpha-MOS) 18 MOS Jia et al. (2020)  

Shelf life assessment FOODsniffer Not indicated Castrica et al. (2021) 
Tuna Detection of fresh and 

contaminated fish 
Home-made 8 MOS Astuti et al. (2023) 

Seafood Quality inspection Olfosense (Airsense) 4 MOS, 1 PID & 2 EC Grassi et al. (2022) 
Fish and milk Detection fo freshness and 

spoilage 
Home made SAW Verma & Yadava (2015) 

Dairy products     
Milk Characterization of pasteurized 

milk spoilage 
Cyranose320 
(Sensigent) 

32 CP Ehsan et al. (2021) 

Cheese Aging discrimination of French 
cheeses 

Home made 5 MOS Ghasemi-Varnamkhasti et al. 
(2019)  

Cheese aroma evolution POLFA (Karumoa Co.) Not indicated Fujioka (2021) 
Eggs      

Prediction of egg freshness Heracles (AlphaMOS) Ultrafast GC Yimenu et al. (2017)  
Prediction of egg storage PEN2 (Airsense) 10 MOS Li et al. (2017) 

b) E-tongue applications 
Beef meat Detection of ammonia and 

putrescine during storage 
Voltammetric Modified screen-printed electrodes with bisphthalocyanine 

and polypyrrole 
Apetrei & Apetrei (2016) 

Pork Monitoring of freshness under 
cold storage 

Potentiometric Metallic (Au, Ag, Cu, Pb, Zn) and graphite electrodes Gil et al. (2011) 

Fish (Cod) Shelf life quality assessment Voltammetric Array 1: 4 noble metal (Ir, Rh, Pt and Au) elettrodes Array 
2: 4 non noble metal (Ag, Co, Cu and Ni) elettrodes 

Ruiz-Rico et al. (2013) 

Fish (Pontic shad) Freshness monitoring Voltammetric Polypyrrole modified screen-printed electrodes Apetrei et al. (2013) 
Fish (Parabramis 

pekinensis) 
Freshness detection Potentiometric (Astree, 

AlphaMOS) 
7 ChemFET Han et al. (2015) 

Milk Monitoring of quality and 
storage time 

Voltammetric 4 working electrodes (Au, Ag, Pt and Pd) Wei et al. (2013)  

Freshness assessment Potentiometric pH probe Tang & Zulkafli (2013) 
Cheese (Ceddar) Aging and protein/fat content 

discrimination 
Potentiometric (Astree, 
AlphaMOS) 

7 ChemFET Lipkowitz et al. (2018)  
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the FOODSniffer® was applied on refrigerated pork meat for shelf life 
assessment. The three-color responses of this e-nose (green - fresh; or
ange - cook well; red - spoiled) were highly correlated with the sensory 
attributes, total biogenic amine content and microbiological count, 
demonstrating that this simple and cheap device can be applied by 
producers and consumers for meat quality evaluation. 

Wojnowski, Majchrzak, Dymerski, Gębicki, and Namieśnik, (2017b) 
applied the HERACLES e-nose and an e-nose prototype, with six MOS 
sensors and two photoionization detectors (PID), for the determination 
of chicken meat shelf life. A sensory panel evaluated the aroma and the 
appearance of the samples up to 7 days of refrigerated storage. Heracles 
was applied to detect changes in the aromatic profile holistically, as 
fingerprint, and for the qualitative identification of volatiles in sample 
headspace. The e-nose prototype was used as dedicated device to obtain 
rapid and trustworthy results when combined with chemometric anal
ysis on the collected signals. 

Among the homemade e-noses, specifically developed to be applied 
on meat, a mobile e-nose (MoLen), using MOS sensors in a wireless 
sensor network, has been proposed for beef quality detection (Wijaya & 
Sarno, 2015); likewise, Hasan, Ejaz, Ejaz, and Kim, (2012) developed an 
eight-MOS sensors e-nose for monitoring beef and fish freshness. Two 
groups of samples were analyzed with the aim of identifying the decayed 
item. Among chemometric strategies (ANN, SVM and kNN) applied to 
identify product decay, kNN demonstrated to be the more reliable in 
terms of performance. 

(Grassi et al., 2019) developed a portable four-MOS sensors e-nose 
(Mastersense), for the assessment of meat and fish freshness. A cloud 
platform was developed for the storage of the collected data. This device 
was applied on refrigerated beef, poultry, plaice, and salmon; whereas 
the TVC was used to classify sample freshness according to a traffic light 
system. kNN and PLS-DA classifications exceded 83.3% of sensitivity 
and specificity, demonstrating the Mastersense’s ability to correctly 
assess the sample freshness. 

All these studies are important examples of the applicability of e- 
nose to evaluate the shelf life of meat; at the same time the role of 
chemometrics for the development of novel devices and for ensuring the 
reliability of the results is clearly highlighted. 

Freshness assessment is even more critical for fish as it is crucial to 
ensure consumer safety. However, the commonly used methods to 
evaluate fish quality, including microbial, physico-chemical and sensory 
analyses (Cheng, Sun, Zeng, & Liu, 2015), are destructive, expensive and 
require skilled personnel; therefore, e-nose has been proposed as a rapid 
and non-destructive device for detecting fish volatiles which, in many of 
the reviewed works, have been correlated with specific indicators of fish 
spoilage. 

In the work of Jia et al. (2012), the commercial FOX 4000 (Alpha 
MOS, Toulouse, France) e-nose with eighteen-MOS sensors was applied 
to assess the freshness of salmon fillets during storage at − 2, 0, 4 and 
10 ◦C. The volatile evolution was correlated with TBA, TVB-N, total 
aerobic bacteria count and sensory quality. A PCA-radial basis function 
neural network model was applied to predict the freshness of the 
analyzed samples. 

Andre, Facure, Mercante, and Correa (2022), developed an impedi
metric e-nose to detect ammonia and volatile amines resulting from the 
decomposition of proteins in fish during storage. Seven sensors, 
combining inorganic nanofibers, obtained by electrospinning, with 
conducting polymers (polyaniline, polystyrene sulfonate), were applied. 
This device demonstrated good performance for the discrimination of 
volatile amines. 

An eight-MOS sensors e-nose was applied to detect tuna contami
nated with Pseudomonas aeruginosa, one of the most common microor
ganisms causing fish spoilage by producing trimethylamine. A SVM 
model classified the contaminated fish with an accuracy of 99% (Astuti 
et al., 2023). 

In a recent work, Grassi, Benedetti, Magnani, Pianezzola, and Buratti 
(2022), proposed a specific and portable e-nose system, composed by 

four-MOS sensors, a PID and two electrochemical cells (ECs), for the 
freshness detection of refrigerated seafood products (sole, red mullet 
and cuttlefish). The K-means method was applied to cluster samples into 
three classes (unspoiled, acceptable and spoiled), then kNN and PLS-DA 
models were developed to classify the seafood products according to 
their freshness and regardless the species. The prediction ability of the 
kNN model provided 100% overall precision. 

Remaining in the field of fish products, some works have been 
published to evaluate the freshness of shrimps (Srinivasan, Robinson, 
Geevaretnam, & Rayappan, 2020; Du, Chai, Guo, & Lu, 2015; Jiang, Li, 
Zheng, Lin, & Hui, 2016) which easily deteriorate during transportation 
and storage due to their high protein and moisture content, potentially 
resulting in threats to human health (Duc et al., 2009). In particular, 
Srinivasana, Robinson, Geevaretnam, & Rayappan, (2020), estimated 
the quality of Pacific white shrimp using a homemade e-nose 
(Shrimp-Nose) consisting of six MOS sensors. Shrimp samples were kept 
at 29 ◦C and at 2 ◦C and measurements were performed at different 
times. Supporting indices - pH variation, TVB-N, texture analysis, TVC, 
sensory score and surface black spots formation (melanosis) - were 
evaluated. PCA, decision tree, kNN and soft-max regression were 
implemented on collected data and Shrimp-Nose measurements were 
found in accordance with the results of analytical indices. 

The aroma of milk and dairy products greatly influence the consumer 
preferences and depend on many factors related to the animal, the heat 
treatments, the starters, and the microbial and chemical contaminations. 
These factors make it difficult to define unique criteria for classifying the 
quality and the spoilage status of dairy products. In this context, the e- 
nose can be considered a rapid method to ensure high-quality standard 
and integrity of milk and dairy products (Yakubu et al., 2022). 

During the milk storage, some bacteria might cause spoilage by 
producing off-flavoring volatile compounds, such as acetone, butanone, 
pentanal, and ethanol (Rashid et al., 2019). Consequently, the e-nose 
assessment of volatiles in the headspace of milk may be useful to predict 
shelf life. 

Using the commercial e-nose Cyranose320, Ehsan, Al-Attabi, 
Al-Habsi, Claereboudt, and Rahman (2021) estimated the shelf life of 
pasteurized milk stored for 56 h at 25 ◦C and for 15 days at 4 ◦C. E-nose 
data were elaborated by PCA and LDA and a clear shift of the samples, 
also evidenced by the microbial count, was identified after 24 h at 25 ◦C 
and 12 days at 4 ◦C. 

Cheese shelf life has an impact on its sensory properties (taste, odor 
and appearance); e-nose evaluation of volatile compounds produced 
during aging can be useful to evaluate cheese quality and to monitor its 
shelf life. 

In the work of Ghasemi-Varnamkhasti, Mohammad-Razdari, Yoose
fian, Izadi, and Siadat (2019), a homemade five-MOS sensor e-nose, was 
applied to discriminate French cheeses produced with cow, goat and 
sheep milk, and to classify samples according to their storage period. For 
data elaboration, PCA, LDA, SVM, PLS, and ANN methods were applied; 
ANN classified the different types of cheese with high accuracy, LDA 
performed well in classifying cheese samples according to their storage 
time, and PLS predicted well the odor pattern. 

Egg is another perishable product that can rapidly loose its quality 
during storage. The deterioration is due to chemical, nutritional, and 
functional changes related to temperature, humidity, storage time and 
hen age (Akter, Kasim, Omar, & Sazili, 2014; Tabidi, 2011; Chung, & 
Lee, 2014). In egg the concentration of volatiles increases during stor
age, therefore e-nose could be a useful tool to detect its freshness and 
quality (Adamiec, Dolezal, Mikova, & Davidek, 2002). In two recent 
works, two commercial e-noses have been applied to evaluate egg shelf 
life. In the work of Li, Zhu, Jiang, & Wang, (2017), the PEN2 e-nose was 
applied to predict egg storage time and yolk index. Yimenu, Kim, & Kim 
(2017) investigated the ability of HERACLES e-nose to evaluate the shelf 
life, the Haugh unites and the sensory scores of eggs stored at 20 ◦C for 
20 days. Discriminant factor analysis was used to discriminate eggs ac
cording to their storage time; whereas models to predict storage time, 
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Haugh units and sensory scores were developed by PLS. 

4.3. E-tongue 

E-tongue can play an important role in determining the quality and 
freshness of foods with many possible applications according to the 
selected sensors. 

Table 2b shows some recent applications of the e-tongue for shelf life 
assessment of meat, fish and dairy products. Considering the informa
tion reported in Table 2b potentiometric and voltammetric sensors have 
been applied in all the examined works, mainly due to their low cost and 
large availability on the market. Furthermore, voltammetric sensors are 
generally characterized by low detection limit, high selectivity and 
sensitivity, while potentiometric sensors ensure fast response, good 
reproducibility and selectivity to different compounds (Bratov, Abra
mova, & Ipatov, 2010). 

Considering the voltammetric systems, Apetrei, Rodriguez-Mendez, 
Apetrei, and de Saja (2013) developed an e-tongue consisting of 
screen-printed carbon electrodes on which polypyrrole, doped with 
electroactive materials, was deposited. The device was used to evaluate 
the biogenic amines in Pontic shad (Alosa pontica). A PLS-DA model was 
built to classify fish according to the days of storage. In a more recent 
work, Apetrei and Apetrei (2016) applied screen printed carbon elec
trodes, modified with bisphthalocyanine and polypyrrole, for the 
detection of amino compounds in beef samples. The modified electrodes 
showed excellent analytical properties towards ammonia and putrescine 
with a very low detection limit. The e-tongue developed using the two 
types of electrodes was applied to monitor beef freshness and PLS-DA 
was effective in discriminating and classifying beef samples according 
to their storage time. 

Ruiz-Rico et al. (2013) applied a voltammetric e-tongue for the shelf 
life evaluation of fresh cod fillets in cold storage. The e-tongue system 
was composed by eight metallic sensors grouped in two arrays made up 
of noble and non-noble metals. Cod fillets were stored for up to seven 
days and physico-chemical and microbial analyses were performed 
every day, together with e-tongue measurements. PCA results demon
strated the e-tongue ability to cluster samples based on their storage 
time, in accordance with physico-chemical and microbial results. 

With the aim of monitoring the quality of unsealed pasteurized milk, 
Wei, Wang, and Zhang (2013) developed a homemade voltammetric 
e-tongue, equipped with four working electrodes to which two potential 
waveforms were applied. The samples were measured during 72 h of 
storage and PCA and CA were used to cluster the milk samples. TBC and 
viscosity were also evaluated and PLS regression and least squares-SVM 
(LS-SVM) were applied for their prediction. The LS-SVM showed better 
results with R2 of 0.986 and 0.999 for the prediction of viscosity and 
TBC, respectively. 

In all the examined works a good correlation of the chemical and 
microbial parameters with voltammetric e-tongue data was found, 
demonstrating that this device could be a useful tool for shelf life 
evaluation. 

Considering the potentiometric systems, Gil et al. (2011) developed a 
homemade e-tongue, equipped with metal (Au, Ag, Cu, Pb, Zn) and 
graphite electrodes. The device was applied to evaluate the evolution of 
some physico-chemical, microbial, and biochemical parameters, on 
refrigerated pork loin during storage. Elapsed post-mortem time was 
defined by ANN analysis, whereas PLS models well correlated the 
e-tongue data with measured deterioration indexes (pH, microbial 
count, and nucleoside concentration). 

An e-tongue prototype, built from a pH sensor along with a 
graphical-user-interface, was applied to measure fresh and spoiled 
samples of pasteurized and non-pasteurized milk (Tang & Zulkafli, 
2013). The experimental results showed the failure of pH value in 
measuring milk freshness; indeed, additional sensors were required to 
improve the performance of the device. 

The commercial Astree e-tongue, combined with linear and non- 

linear multivariate algorithms, was applied to evaluate fish (Para
bramis pekinensis) spoilage during cold storage. For qualitative analysis, 
data were processed by LDA and SVM and the best classification results 
were obtained by SVM. For quantitative prediction e-tongue data were 
correlated to TVB-N and TVC values by PLS and support vector regres
sion (SVR) (Han, Huang, Teye, & Gu, 2015). 

In the work of Lipkowitz, Ross, Diako, and Smith (2018), Astree 
e-tongue and sensory analysis were applied to follow changes in tastes 
and flavors of on Cheddar cheeses with different protein-fat ratios (PFR), 
during aging. PCA was performed to cluster cheeses by aging time and 
PFR whereas PLS regression models were built to predict the sensory 
attributes by e-tongue data. 

The applications of potentiometric systems generally showed reli
able results, especially when the commercial device has been used. 
Further work should be done in the field of tailored potentiometric 
systems. 

4.4. Combined applications 

It is noteworthy that joint analysis of data acquired by the e-sensing 
system can provide complementary information and more complete 
view of considered samples (Di Rosa, Leone, Cheli, & Chiofalo, 2017; 
Calvini & Pigani, 2022). 

Some works in the literature apply different e-sensing systems even if 
the collected data are separately processed and not jointly analyzed 
(Haddi et al., 2015; Bassey et al., 2022b; Tudor Kalit, Marković, Kalit, 
Vahčić, Havranek, 2014; Ghasemi-Varnamkhasti, Apetrei, Lozano, & 
Anyogu, 2018). 

In combining e-sensing systems, data fusion is the most important 
step and can be applied at three different levels: low level (LL); mid-level 
(ML) and high-level (HL) (Calvini & Pigani, 2022) (Fig. 4). 

In LL data fusion, data obtained from the e-sensing devices are 
merged in a unique matrix subjected to multivariate statistical analysis. 
In ML data fusion, data from e-sensing devices are analyzed separately to 
extract or select the relevant variables, which are then combined to get 
the fused dataset used to build the model. In HL data fusion, data from e- 
sensing devices are analyzed and a model is built from each device, then 
all model results are merged (Kiani, Minaei, & Ghasemi-Varnamkhasti, 
2016b). 

Although data fusion is very promising for food quality assessment 

Fig. 4. Schematic representation of data fusion levels.  

S. Grassi et al.                                                                                                                                                                                                                                   



Food Packaging and Shelf Life 40 (2023) 101221

11

(Kiani, Minaei, & Ghasemi-Varnamkhasti, 2016b), few papers examined 
the combined applications of e-sensing for shelf life assessment of fresh 
food of animal origin. 

In two works, the combined application of e-nose and e-tongue was 
attempted to predict fish freshness (Shi et al. 2018b; Han, Huang, Teye, 
Gu, & Gu, 2014). In particular, Han et al. (2014) evaluated the freshness 
of Pseudosciaena Crocea fish by combining an e-nose with nine-MOS 
sensors and a commercial e-tongue (Astree). As first, e-nose and 
e-tongue data were separately processed by PCA, then three-layer radial 
basis function neural network models were built for qualitative 
discrimination of freshness, by considering e-nose principal components 
(PCs), e-tongue PCs and their combination. The highest discrimination 
rate was obtained when the two systems were combined. For quantita
tive determination, a SVM model was built to correlate the merged 
e-nose and e-tongue data and the TVC values (R in prediction: 0.91). 

Bougrini et al. (2014) combined a hybrid e-nose, consisting of two 
sensor arrays, and a voltammetric e-tongue for the classification of 
pasteurized milk samples, based on cold storage time. For this purpose, a 
ML data fusion approach was used, and the variable selection was per
formed for each data source before their combination and elaboration. 
SVM method, applied to the new data subset, provided 100% accuracy 
in recognizing the storage time of pasteurized milk. 

A comprehensive method to evaluate the freshness of pork and 
chicken meat by fusing e-nose, e-eye and artificial tactile (AT) systems 
was developed by Weng et al., 2020. Odor measurements were con
ducted by a homemade e-nose with six MOS sensors; color was evalu
ated by an e-eye system using three-color spaces (RGB, HSI and CIELab); 
a testing machine was used to mimic human hand in touching meats and 
feeling their rubbery state. The TVB-N assay was performed to define 
meat freshness and used as reference to validate the proposed method. 
PCA and SVM were applied to data of each single device and after their 
fusion. Results showed that, compared to a single device, the data fusion 
greatly improved the freshness assessment of meat products. Addition
ally, PLS analysis was applied to build TVB-N prediction models by 
merging data from the three systems; for the pork meat the root mean 
square error in prediction (RMSEP) and the R2 were 1.21 and 0.91, 
respectively; for chicken meat the RMSEP and the R2 were 0.98, and 
0.94, respectively. 

In the study by Huang, Zhao, Chen, and Zhang (2014), color, 
chemical composition and volatile compounds of pork meat samples 
were acquired during spoilage by e-eye, near infrared spectroscopy, and 
e-nose. The characteristic variables were selected from each system by 
PCA and submitted to a ML data fusion approach. BP-ANN model well 
performed in prediction of TVB-N content with a RMSEP of 
2.73 mg/100 g and an R2 of 0.95. 

In the work by Li et al. (2023), four prediction methods - ANN, 
random forest-regression (RFR), extreme gradient boosting (XGBoost) 
and SVR - were used to jointly elaborate e-nose, e-tongue, and colori
metric data collected from horse mackerel (Trachurus japonicus) fish 
samples during storage. In this study it was found that the evolution of 
biochemical indices (K value, TBA value, carbonyl content and 
Ca2+-ATPase activity) was in good relationship with the evolution of 
volatile compounds, tastes and color parameters, evaluated by the three 
e-sensing devices. Compared to the independent e-sensing data, the PCA 
applied on the fused data set ensured a better representation of samples 
with a total explained variance of about 95%, considering the first four 
PCs. Furthermore, the quantitative analyses showed that ANN, RFR and 
XGBoost performed well in the prediction of biochemical indices with R2 

higher than 0.92, 0.93 and 0.88, respectively. 

5. Conclusion and future trends 

According to the reviewed studies, e-sensing systems show great 
potential for fresh food shelf life assessment. Although these systems are 
very promising due to their inherent characteristics, there are some 
drawbacks to be considered for their routine use. 

Visual inspection by colorimeters gives an idea of color changes in 
selected spots, thus being far from the characterization of the whole food 
surface. This can be overcome using e-eye, which measure color, texture 
and morphological characteristics with high accuracy and sensitivity. 
Even if the market is often oriented to consumer-friendly devices (such 
as the mobile phones’ camera), it should be noticed that the use of im
aging system, without the proper knowledge of environmental effects, 
mainly illumination and distance, can lead to misinformation. On the 
contrary, the implementation at industrial level, where operating con
dition can be highly controlled, is highly prompt. 

The e-nose has the advantage of quick analysis (few minutes), but the 
sample preparation is very challenging since the time required for the 
development of the headspace depends on the sample type and size, and 
on the container used. Moreover, some e-noses require high operating 
temperatures (250–500 ◦C) and are very sensitive to humidity and 
pressure. Sensor drift is another critical aspect for e-nose loss of per
formance, caused by sensor aging and contamination. 

For e-tongue, the main disadvantages are the sample pretreatment 
(particularly for solid foods) and the relatively short lifetime of sensors 
due to absorption of contaminating molecules on their surface. 

Another significant drawback is that traditional methods are still the 
reference for product freshness determination. The reasons are the lack 
of standardization in terms of analytical procedure, performance 
assessment, and result reporting. This makes e-sensing techniques rec
ommended for screening purpose or for internal method. The harmo
nization of analytical guidelines, data handling, and performance 
criteria will settle the basis for e-sensing recognition as standardized 
methods for the determination of fresh food freshness. The way is still 
long, but it is worth to investigate further applications, not only in the 
laboratories but also at market or industrial level, to fully validate e- 
sensing potentials. 
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