Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic (DA) neurons have long been considered as potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine and cocaine addiction or Parkinson's disease. However, DA neurons express mRNAs coding for most, if not all, neuronal nAChR subunits, and the subunit composition of functional nAChRs has been difficult to establish. Immunoprecipitation experiments performed on mouse striatal extracts allowed us to identify three main types of heteromeric nAChRs (α4β2*, α61β 2*, and α4α6β2*) in DA terminal fields. The functional relevance of these subtypes was then examined by studying nicotine-induced DA release in striatal synaptosomes and recording ACh-elicited currents in DA neurons from α4, α6, α4α6, and β2 knock-out mice. Our results establish that α6β2* nAChRs are functional and sensitive to α-conotoxin MII inhibition. These receptors are mainly located on DA terminals and consistently do not contribute to DA release induced by systemic nicotine administration, as evidenced by in vivo microdialysis. In contrast, (nonα6)α4β2* nAChRs represent the majority of functional heteromeric nAChRs on DA neuronal soma. Thus, whereas a combination of α6β2* and α4β 2* nAChRs may mediate the endogenous cholinergic modulation of DA release at the terminal level, somato-dendritic (nonα6)α4β2* nAChRs most likely contribute to nicotine reinforcement.

Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice / N. Champtiaux, C. Gotti, M. Cordero-Erausquin, D.J. David, C. Przybylski, C. Lena, F. Clementi, M. Moretti, F.M. Rossi, N. Le Novere, J.M. McIntosh, A.M. Gardier, J.P. Changeux. - In: THE JOURNAL OF NEUROSCIENCE. - ISSN 0270-6474. - 23:21(2003), pp. 7820-7829.

Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice

F. Clementi;M. Moretti;
2003

Abstract

Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic (DA) neurons have long been considered as potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine and cocaine addiction or Parkinson's disease. However, DA neurons express mRNAs coding for most, if not all, neuronal nAChR subunits, and the subunit composition of functional nAChRs has been difficult to establish. Immunoprecipitation experiments performed on mouse striatal extracts allowed us to identify three main types of heteromeric nAChRs (α4β2*, α61β 2*, and α4α6β2*) in DA terminal fields. The functional relevance of these subtypes was then examined by studying nicotine-induced DA release in striatal synaptosomes and recording ACh-elicited currents in DA neurons from α4, α6, α4α6, and β2 knock-out mice. Our results establish that α6β2* nAChRs are functional and sensitive to α-conotoxin MII inhibition. These receptors are mainly located on DA terminals and consistently do not contribute to DA release induced by systemic nicotine administration, as evidenced by in vivo microdialysis. In contrast, (nonα6)α4β2* nAChRs represent the majority of functional heteromeric nAChRs on DA neuronal soma. Thus, whereas a combination of α6β2* and α4β 2* nAChRs may mediate the endogenous cholinergic modulation of DA release at the terminal level, somato-dendritic (nonα6)α4β2* nAChRs most likely contribute to nicotine reinforcement.
Settore BIO/14 - Farmacologia
2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/8433
Citazioni
  • ???jsp.display-item.citation.pmc??? 188
  • Scopus 438
  • ???jsp.display-item.citation.isi??? ND
social impact