Two isoforms of ferredoxin-NADP(+) reductase (FNR) exist in higher plants, the leaf (or photosynthetic) and the root (or non-photosynthetic) isoform, which have 48% amino acid sequence identity and display specific structural and functional features. With the aim to gain further insight into the structure-function relationship of this enzyme, we designed two novel chimeric flavoenzymes by swapping the structural domains between the leaf and the root isoforms. Characterization of the chimeras would allow dissection of the contribution of the individual domains to catalysis. The chimera obtained by grafting together the FAD-binding domain of the root-isoform and the NADP-binding domain of the leaf-isoform was inactive when expressed in Escherichia coli. On the other hand, the chimera assembled in the opposite way (leaf FAD-binding domain and root NADP-binding domain) was functional and was produced in the bacterial host to a level threefold higher than that of the parent enzymes. The protein was purified and found to be as stable as the natural isoforms. Limited proteolysis excluded the presence in the chimera of misfolded regions. The affinity of the chimera for ferredoxin I (Fd I) was similar to that of the leaf isoform, although interprotein electron-transfer was partially impaired. As occurs with the root isoform, the chimera bound NADP(+) with high affinity, while spectroscopic evidence suggested that the conformation adopted by the nicotinamide moiety bound to the chimera was similar to that observed in the leaf enzyme. Interestingly, the chimera, by combining favorable features from both parent isoforms, acquired a catalytic efficiency (k(cat)/K(m)), as an NADPH-dependent diaphorase, higher than those of both the root ( approximately 2-fold) and the leaf enzyme ( approximately 5-fold). Thus, molecular breeding between isozymes has improved the catalytic properties of FNR.

Domain exchange between isoforms of ferredoxin-NADP+ reductase produces a functional enzyme / A. Aliverti, V. Pandini, G. Zanetti. - In: BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS. - ISSN 1570-9639. - 1696:1(2004), pp. 93-101.

Domain exchange between isoforms of ferredoxin-NADP+ reductase produces a functional enzyme

A. Aliverti
Primo
;
V. Pandini
Secondo
;
G. Zanetti
Ultimo
2004

Abstract

Two isoforms of ferredoxin-NADP(+) reductase (FNR) exist in higher plants, the leaf (or photosynthetic) and the root (or non-photosynthetic) isoform, which have 48% amino acid sequence identity and display specific structural and functional features. With the aim to gain further insight into the structure-function relationship of this enzyme, we designed two novel chimeric flavoenzymes by swapping the structural domains between the leaf and the root isoforms. Characterization of the chimeras would allow dissection of the contribution of the individual domains to catalysis. The chimera obtained by grafting together the FAD-binding domain of the root-isoform and the NADP-binding domain of the leaf-isoform was inactive when expressed in Escherichia coli. On the other hand, the chimera assembled in the opposite way (leaf FAD-binding domain and root NADP-binding domain) was functional and was produced in the bacterial host to a level threefold higher than that of the parent enzymes. The protein was purified and found to be as stable as the natural isoforms. Limited proteolysis excluded the presence in the chimera of misfolded regions. The affinity of the chimera for ferredoxin I (Fd I) was similar to that of the leaf isoform, although interprotein electron-transfer was partially impaired. As occurs with the root isoform, the chimera bound NADP(+) with high affinity, while spectroscopic evidence suggested that the conformation adopted by the nicotinamide moiety bound to the chimera was similar to that observed in the leaf enzyme. Interestingly, the chimera, by combining favorable features from both parent isoforms, acquired a catalytic efficiency (k(cat)/K(m)), as an NADPH-dependent diaphorase, higher than those of both the root ( approximately 2-fold) and the leaf enzyme ( approximately 5-fold). Thus, molecular breeding between isozymes has improved the catalytic properties of FNR.
Ferredoxin-NADP(+) reductase; flavoprotein; protein engineering; specificity; chimeric protein
Settore BIO/10 - Biochimica
2004
Article (author)
File in questo prodotto:
File Dimensione Formato  
FNR leaf-root chimera Aliverti 2004_BBA.pdf

accesso riservato

Descrizione: Articolo completo
Tipologia: Publisher's version/PDF
Dimensione 369.17 kB
Formato Adobe PDF
369.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/7969
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact