Beta-2 microglobulin (β2m) is the light chain of class I major histocompatibility complex (MHC-I). β2m is an intrinsically amyloidogenic protein that can assemble into amyloid fibrils in a concentration dependent manner. β2m is accumulated in serum of haemodialysed patients, and deposited in the skeletal joints, causing dialysis related amyloidosis. Recent reports suggested that the loop comprised between β2m strands D and E is crucial for protein stability and for β2m propensity to aggregate as cross-β structured fibrils. In particular, the role of Trp60 for β2m stability has been highlighted by showing that the Trp60 → Gly β2m mutant is more thermo-stable and less prone to aggregation than the wild type protein. On the contrary the Asp59 → Pro β2m mutant shows lower Tm and stronger tendency to fibril aggregation. To further analyse such properties, the Trp60 → Val β2m mutant has been expressed and purified; the propensity to fibrillar aggregation and the folding stability have been assessed, and the X-ray crystal structure determined to 1.8 Å resolution. The W60V mutant structural features are discussed, focusing on the roles of the DE loop and of residue 60 in relation to β2m structure and its amyloid aggregation trends.

Human beta-2 microglobulin W60V mutant structure: implications for stability and amyloid aggregation / S. Ricagno, S. Raimondi, S. Giorgetti, V. Bellotti, M. Bolognesi. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - 380:3(2009), pp. 543-547. [10.1016/j.bbrc.2009.01.116]

Human beta-2 microglobulin W60V mutant structure: implications for stability and amyloid aggregation

S. Ricagno
Primo
;
M. Bolognesi
Ultimo
2009

Abstract

Beta-2 microglobulin (β2m) is the light chain of class I major histocompatibility complex (MHC-I). β2m is an intrinsically amyloidogenic protein that can assemble into amyloid fibrils in a concentration dependent manner. β2m is accumulated in serum of haemodialysed patients, and deposited in the skeletal joints, causing dialysis related amyloidosis. Recent reports suggested that the loop comprised between β2m strands D and E is crucial for protein stability and for β2m propensity to aggregate as cross-β structured fibrils. In particular, the role of Trp60 for β2m stability has been highlighted by showing that the Trp60 → Gly β2m mutant is more thermo-stable and less prone to aggregation than the wild type protein. On the contrary the Asp59 → Pro β2m mutant shows lower Tm and stronger tendency to fibril aggregation. To further analyse such properties, the Trp60 → Val β2m mutant has been expressed and purified; the propensity to fibrillar aggregation and the folding stability have been assessed, and the X-ray crystal structure determined to 1.8 Å resolution. The W60V mutant structural features are discussed, focusing on the roles of the DE loop and of residue 60 in relation to β2m structure and its amyloid aggregation trends.
Beta turn; Beta-2 microglobulin; Dialysis related amyloidosis; Ramachandran plot; Trp60 mutant; W60V mutant
Settore BIO/10 - Biochimica
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/62858
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact