The Dipole Stabilizing Rods (DSR’s) are devices used in order to reduce a priori the effect of perturbation on the operating mode of a four-vane RFQ caused by neighboring dipole modes by increasing the frequency spacing between the TE210 mode and dipole modes, without, in principle, affecting the quadrupole TE210 mode. They have proven to be particularly useful in the case of coupled RFQ’s whose overall length is significantly greater than the operatingwavelength. In this article we present a circuit model of such DSR’s, that, used in combination with a transmission line model of a four vane RFQ, has allowed us to predict the dimensioning of the DSR’s in the case of the aluminum model of TRASCO RFQ. The DSR parameters and, in general, the accuracy of the model have been also confirmed by HFSS simulations and by RF measurements on the above-mentioned model.

DIPOLE STABILIZING RODS SYSTEM FOR A FOUR-VANE RFQ : MODELING AND MEASUREMENT ON THE TRASCO RFQ ALUMINUM MODEL AT LNL / F. Grespan, P. A., P. A. - In: Proceedings of EPAC 2006, Edinburgh, Scotland / [a cura di] C. Prior. - [s.l] : Prior, Christopher, 2006. - ISBN 92-9083-278-9 e 978-92-9083-278-2. - pp. 1301-1303 (( Intervento presentato al 10. convegno European Particle Acceleration Conference tenutosi a Edinburgh nel 2006.

DIPOLE STABILIZING RODS SYSTEM FOR A FOUR-VANE RFQ : MODELING AND MEASUREMENT ON THE TRASCO RFQ ALUMINUM MODEL AT LNL

F. Grespan
Primo
;
2006

Abstract

The Dipole Stabilizing Rods (DSR’s) are devices used in order to reduce a priori the effect of perturbation on the operating mode of a four-vane RFQ caused by neighboring dipole modes by increasing the frequency spacing between the TE210 mode and dipole modes, without, in principle, affecting the quadrupole TE210 mode. They have proven to be particularly useful in the case of coupled RFQ’s whose overall length is significantly greater than the operatingwavelength. In this article we present a circuit model of such DSR’s, that, used in combination with a transmission line model of a four vane RFQ, has allowed us to predict the dimensioning of the DSR’s in the case of the aluminum model of TRASCO RFQ. The DSR parameters and, in general, the accuracy of the model have been also confirmed by HFSS simulations and by RF measurements on the above-mentioned model.
2006
Book Part (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/62285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact