The use of municipal solid waste compost (MSWC) as soil organic amendment is of an economic and environmental interest. However, little is known about the effectiveness of MSWC application on agricultural soil in northern Africa arid climate. We assessed the impact of five years' applications of different organic and mineral fertilizers on wheat grain yields and soil chemical and microbial characteristics. Soils were treated with MSWC at rates of 40 (C1) and 80 (C2) Mg ha -1, farmyard manure at a rate of 40 Mg ha -1 (M), chemical fertilizers (Cf) and the combinations (C1Cf, C2Cf, MCf). Wheat grain yield was enhanced with all amendments. Parallel increases of heavy metal levels and faecal coliform were also recorded except for Cf treatments. Based on wheat grain yield, heavy metal and faecal coliform data, we determined the treatment effectiveness index (E xx), calculated by dividing the pollutant increase ratio by the grain yield increase ratio. The treatment effectiveness index E C1 indicated lower faecal and heavy metal pollution with positive gains in wheat yields. Despite polluting effects on soil determined by the different treatments, no significant differences between treatments were observed in total bacterial count and soil bacterial community structure, as shown by 16S rRNA gene PCR-denaturing gradient gel electrophoresis banding patterns and 16S rRNA gene Length Heterogeneity-PCR analysis. According to the collected data, the use of MSWC at a rate of 40 Mg ha -1 might be recommended.

Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate / H. Cherif, F. Ayari, H. Ouzari, M. Marzorati, L. Brusetti, N. Jedidi, A. Hassen, D. Daffonchio. - In: EUROPEAN JOURNAL OF SOIL BIOLOGY. - ISSN 1164-5563. - 45:2(2009), pp. 138-145.

Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate

M. Marzorati;L. Brusetti;D. Daffonchio
Ultimo
2009

Abstract

The use of municipal solid waste compost (MSWC) as soil organic amendment is of an economic and environmental interest. However, little is known about the effectiveness of MSWC application on agricultural soil in northern Africa arid climate. We assessed the impact of five years' applications of different organic and mineral fertilizers on wheat grain yields and soil chemical and microbial characteristics. Soils were treated with MSWC at rates of 40 (C1) and 80 (C2) Mg ha -1, farmyard manure at a rate of 40 Mg ha -1 (M), chemical fertilizers (Cf) and the combinations (C1Cf, C2Cf, MCf). Wheat grain yield was enhanced with all amendments. Parallel increases of heavy metal levels and faecal coliform were also recorded except for Cf treatments. Based on wheat grain yield, heavy metal and faecal coliform data, we determined the treatment effectiveness index (E xx), calculated by dividing the pollutant increase ratio by the grain yield increase ratio. The treatment effectiveness index E C1 indicated lower faecal and heavy metal pollution with positive gains in wheat yields. Despite polluting effects on soil determined by the different treatments, no significant differences between treatments were observed in total bacterial count and soil bacterial community structure, as shown by 16S rRNA gene PCR-denaturing gradient gel electrophoresis banding patterns and 16S rRNA gene Length Heterogeneity-PCR analysis. According to the collected data, the use of MSWC at a rate of 40 Mg ha -1 might be recommended.
Settore AGR/16 - Microbiologia Agraria
2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/57356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 60
social impact