Modulation of mRNA stability by regulatory cis-acting AU-rich elements (AREs) and ARE-binding proteins is an important posttranscriptional mechanism of gene expression control. We previously demonstrated that the 3′-untranslated region of BCL-2 mRNA contains an ARE that accounts for rapid BCL-2 down-regulation in response to apoptotic stimuli. We also demonstrated that the BCL-2 ARE core interacts with a number of ARE-binding proteins, one of which is AU-rich factor 1/heterogeneous nuclear ribonucleoprotein D, known for its interaction with mRNA elements of others genes. In an attempt to search for other BCL-2 mRNA-binding proteins, we used the yeast RNA three-hybrid system assay and identified a novel human protein that interacts with BCL-2 ARE. We refer to it as TINO. The predicted protein sequence of TINO reveals two amino-terminal heterogeneous nuclear ribonucleoprotein K homology motifs for nucleic acid binding and a carboxyl-terminal RING domain, endowed with a putative E3 ubiquitin-protein ligase activity. In addition the novel protein is evolutionarily conserved; the two following orthologous proteins have been identified with protein-protein BLAST: posterior end mark-3 (PEM-3) of Ciona savignyi and muscle excess protein-3 (MEX-3) of Caenorhabditis elegans. Upon binding, TINO destabilizes a chimeric reporter construct containing the BCL-2 ARE sequence, revealing a negative regulatory action on BCL-2 gene expression at the posttranscriptional level.

Identification of TINO : a new evolutionarily conserved BCL-2 AU-rich element RNA-binding protein / M. Donnini, A. Lapucci, L. Papucci, E. Witort, A. Jacquier, G. Brewer, A. Nicolin, S. Capaccioli, N. Schiavone. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 279:19(2004), pp. 20154-20166.

Identification of TINO : a new evolutionarily conserved BCL-2 AU-rich element RNA-binding protein

A. Nicolin;
2004

Abstract

Modulation of mRNA stability by regulatory cis-acting AU-rich elements (AREs) and ARE-binding proteins is an important posttranscriptional mechanism of gene expression control. We previously demonstrated that the 3′-untranslated region of BCL-2 mRNA contains an ARE that accounts for rapid BCL-2 down-regulation in response to apoptotic stimuli. We also demonstrated that the BCL-2 ARE core interacts with a number of ARE-binding proteins, one of which is AU-rich factor 1/heterogeneous nuclear ribonucleoprotein D, known for its interaction with mRNA elements of others genes. In an attempt to search for other BCL-2 mRNA-binding proteins, we used the yeast RNA three-hybrid system assay and identified a novel human protein that interacts with BCL-2 ARE. We refer to it as TINO. The predicted protein sequence of TINO reveals two amino-terminal heterogeneous nuclear ribonucleoprotein K homology motifs for nucleic acid binding and a carboxyl-terminal RING domain, endowed with a putative E3 ubiquitin-protein ligase activity. In addition the novel protein is evolutionarily conserved; the two following orthologous proteins have been identified with protein-protein BLAST: posterior end mark-3 (PEM-3) of Ciona savignyi and muscle excess protein-3 (MEX-3) of Caenorhabditis elegans. Upon binding, TINO destabilizes a chimeric reporter construct containing the BCL-2 ARE sequence, revealing a negative regulatory action on BCL-2 gene expression at the posttranscriptional level.
Settore BIO/14 - Farmacologia
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/5583
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 49
social impact