Actin pedestal formation by pathogenic E. coli requires signaling by the bacterial intimin receptor Tir, which induces host cell actin polymerization mediated by N-WASP and the Arp2/3 complex. Whereas canonical enteropathogenic E. coli (EPEC) recruit these actin regulators through tyrosine kinase signaling cascades, enterohemorrhagic E. coli (EHEC) O157:H7 employ the bacterial effector EspF(U) (TccP), a potent N-WASP activator. Here, we show that IRSp53 family members, key regulators of membrane and actin dynamics, directly interact with both Tir and EspF(U). IRSp53 colocalizes with EspF(U) and N-WASP in actin pedestals. In addition, targeting of IRSp53 is independent of EspF(U) and N-WASP but requires Tir residues 454-463, previously shown to be essential for EspF(U)-dependent actin assembly. Genetic and functional loss of IRSp53 abrogates actin assembly mediated by EHEC. Collectively, these data indentify IRSp53 family proteins as the missing host cell factors linking bacterial Tir and EspF(U) in EHEC pedestal formation.

IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation / SM. Weiss, M. Ladwein, D.Schmidt, J. Ehinger, S. Lommel,K. Städing,U. Beutling, A. Disanza, R. Frank, L. Jänsch, G.Scita, F. Gunzer, K. Rottner, TE. Stradal. - In: CELL HOST & MICROBE. - ISSN 1931-3128. - 5:3(2009 Mar 19), pp. 244-258.

IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation

G.Scita;
2009

Abstract

Actin pedestal formation by pathogenic E. coli requires signaling by the bacterial intimin receptor Tir, which induces host cell actin polymerization mediated by N-WASP and the Arp2/3 complex. Whereas canonical enteropathogenic E. coli (EPEC) recruit these actin regulators through tyrosine kinase signaling cascades, enterohemorrhagic E. coli (EHEC) O157:H7 employ the bacterial effector EspF(U) (TccP), a potent N-WASP activator. Here, we show that IRSp53 family members, key regulators of membrane and actin dynamics, directly interact with both Tir and EspF(U). IRSp53 colocalizes with EspF(U) and N-WASP in actin pedestals. In addition, targeting of IRSp53 is independent of EspF(U) and N-WASP but requires Tir residues 454-463, previously shown to be essential for EspF(U)-dependent actin assembly. Genetic and functional loss of IRSp53 abrogates actin assembly mediated by EHEC. Collectively, these data indentify IRSp53 family proteins as the missing host cell factors linking bacterial Tir and EspF(U) in EHEC pedestal formation.
CELLBIO; MICROBIO; SIGNALING
Settore MED/04 - Patologia Generale
19-mar-2009
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/54716
Citazioni
  • ???jsp.display-item.citation.pmc??? 46
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 84
social impact