Anaplastic large cell lymphomas (ALCLs) represent a subset of lymphomas in which the anaplastic lymphoma kinase (ALK) gene is frequently fused to the nucleophosmin (NPM) gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo and that ALK activity is strictly required for the survival of ALK-positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK-positive ALCL cell lines, abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell-permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPβ and the antiapoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK-positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.

Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and Bcl2A1 as critical target genes / R. Piva, E. Pellegrino, M. Mattioli, L. Agnelli, L. Lombardi, F. Boccalatte, G. Costa, B.A. Ruggeri, M. Cheng, R. Chiarle, G. Palestro, A. Neri, G. Inghirami. - In: THE JOURNAL OF CLINICAL INVESTIGATION. - ISSN 0021-9738. - 116:12(2006), pp. 3171-3182. [10.1172/JCI29401]

Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and Bcl2A1 as critical target genes

L. Agnelli;A. Neri
Penultimo
;
2006

Abstract

Anaplastic large cell lymphomas (ALCLs) represent a subset of lymphomas in which the anaplastic lymphoma kinase (ALK) gene is frequently fused to the nucleophosmin (NPM) gene. We previously demonstrated that the constitutive phosphorylation of ALK chimeric proteins is sufficient to induce cellular transformation in vitro and in vivo and that ALK activity is strictly required for the survival of ALK-positive ALCL cells. To elucidate the signaling pathways required for ALK-mediated transformation and tumor maintenance, we analyzed the transcriptomes of multiple ALK-positive ALCL cell lines, abrogating their ALK-mediated signaling by inducible ALK RNA interference (RNAi) or with potent and cell-permeable ALK inhibitors. Transcripts derived from the gene expression profiling (GEP) analysis uncovered a reproducible signature, which included a novel group of ALK-regulated genes. Functional RNAi screening on a set of these ALK transcriptional targets revealed that the transcription factor C/EBPβ and the antiapoptotic protein BCL2A1 are absolutely necessary to induce cell transformation and/or to sustain the growth and survival of ALK-positive ALCL cells. Thus, we proved that an experimentally controlled and functionally validated GEP analysis represents a powerful tool to identify novel pathogenetic networks and validate biologically suitable target genes for therapeutic interventions.
large-cell lymphoma; binding-protein-beta; differentially expressed genes; receptor tyrosine kinase; non Hodgkins-lymphoma; kappa-B activity; anaplastic lymphoma; mediated lymphomagenesis; RNA interference; down-regulation
Settore MED/15 - Malattie del Sangue
2006
Article (author)
File in questo prodotto:
File Dimensione Formato  
JCI29401.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/46111
Citazioni
  • ???jsp.display-item.citation.pmc??? 70
  • Scopus 134
  • ???jsp.display-item.citation.isi??? 130
social impact