A number of 6-methoxy-1-(2-propionylaminoethyl)indoles, carrying properly selected substituents at the C-2 indole position, were prepared and tested as melatonin receptor ligands. Affinities and intrinsic activities for the human cloned mt1 and MT2 receptors were examined and compared with those of some 2-substituted melatonin derivatives recently described by us. A quantitative structure activity relationship (QSAR) study of the sixteen 2-substituted indole compounds, 5a-k, 1, 8-11, using partial least squares (PLS) and multiple regression analysis (MRA) revealed the existence of an optimal range of lipophilicity for the C2 indole substituent. There are also indications that planar, electron-withdrawing substituents contribute to the affinity by establishing additional interactions with the binding pocket. No mt1/MT2 subtype selectivity was observed, with the relevant exception of the 2-phenethyl derivative 5e, which exhibited the highest selectivity for the h-MT2 receptor among all the compounds tested (MT2/mt1 ratio of ca. 50). Conformational analysis and superposition of 5e to other reported selective MT2 ligands revealed structural and conformational similarities that might account for the MT2/mt1 selectivity of 5e.

Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands / M. Mor, G. Spadoni, B. Di Giacomo, G. Diamantini, A. Bedini, G. Tarzia, P.V. Plazi, S. Rivara, R. Nonno, V. Lucini, M. Pannacci, F. Fraschini, B.M. Stankov. - In: BIOORGANIC & MEDICINAL CHEMISTRY. - ISSN 0968-0896. - 9:4(2001 Apr), pp. 1045-1057.

Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands

V. Lucini;M. Pannacci;F. Fraschini
Penultimo
;
2001

Abstract

A number of 6-methoxy-1-(2-propionylaminoethyl)indoles, carrying properly selected substituents at the C-2 indole position, were prepared and tested as melatonin receptor ligands. Affinities and intrinsic activities for the human cloned mt1 and MT2 receptors were examined and compared with those of some 2-substituted melatonin derivatives recently described by us. A quantitative structure activity relationship (QSAR) study of the sixteen 2-substituted indole compounds, 5a-k, 1, 8-11, using partial least squares (PLS) and multiple regression analysis (MRA) revealed the existence of an optimal range of lipophilicity for the C2 indole substituent. There are also indications that planar, electron-withdrawing substituents contribute to the affinity by establishing additional interactions with the binding pocket. No mt1/MT2 subtype selectivity was observed, with the relevant exception of the 2-phenethyl derivative 5e, which exhibited the highest selectivity for the h-MT2 receptor among all the compounds tested (MT2/mt1 ratio of ca. 50). Conformational analysis and superposition of 5e to other reported selective MT2 ligands revealed structural and conformational similarities that might account for the MT2/mt1 selectivity of 5e.
Settore BIO/14 - Farmacologia
apr-2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/45926
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact