In this study, we demonstrate the protective effect of the activation of sodium-dependent glucose transporter-1 (SGLT-1) on damages induced by TLR ligands, in intestinal epithelial cells and in a murine model of septic shock. In intestinal epithelial cell lines, glucose inhibited the IL-8/keratinocyte-derived chemokine production and the activation of the TLR-related transcription factor NF-kappaB stimulated by LPS or CpG-oligodeoxynucleotide. Oral ingestion of glucose was found to protect 100% of mice from lethal endotoxic shock induced by i.p. LPS administration; protection was only observed when glucose was administered orally, not by i.p. route, suggesting the important role of intestinal epithelial cells in this protection. In addition, we observed that the in vivo protection depends on an increase of anti-inflammatory cytokine IL-10. The cornerstone of the observed immunomodulatory and life-saving effects resides in activation of SGLT-1; in fact, the glucose analog 3-O-methyl-d-gluco-pyranose, which induces the transporter activity, but is not metabolized, exerted the same inhibitory effects as glucose both in vitro and in vivo. Thus, we propose that activated SGLT-1, apart from its classical metabolic function, may be a promising target for inhibition of bacteria-induced inflammatory processes and life-saving treatments, assuming a novel role as an immunological player.

Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa / M. Palazzo, S. Gariboldi, L. Zanobbio, S. Selleri, G.F. Dusio, V. Mauro, A. Rossini, A. Balsari, C. Rumio. - In: JOURNAL OF IMMUNOLOGY. - ISSN 0022-1767. - 181:5(2008), pp. 3126-3136.

Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa

M. Palazzo
Primo
;
S. Gariboldi
Secondo
;
L. Zanobbio;S. Selleri;G.F. Dusio;A. Rossini;A. Balsari
Penultimo
;
C. Rumio
Ultimo
2008

Abstract

In this study, we demonstrate the protective effect of the activation of sodium-dependent glucose transporter-1 (SGLT-1) on damages induced by TLR ligands, in intestinal epithelial cells and in a murine model of septic shock. In intestinal epithelial cell lines, glucose inhibited the IL-8/keratinocyte-derived chemokine production and the activation of the TLR-related transcription factor NF-kappaB stimulated by LPS or CpG-oligodeoxynucleotide. Oral ingestion of glucose was found to protect 100% of mice from lethal endotoxic shock induced by i.p. LPS administration; protection was only observed when glucose was administered orally, not by i.p. route, suggesting the important role of intestinal epithelial cells in this protection. In addition, we observed that the in vivo protection depends on an increase of anti-inflammatory cytokine IL-10. The cornerstone of the observed immunomodulatory and life-saving effects resides in activation of SGLT-1; in fact, the glucose analog 3-O-methyl-d-gluco-pyranose, which induces the transporter activity, but is not metabolized, exerted the same inhibitory effects as glucose both in vitro and in vivo. Thus, we propose that activated SGLT-1, apart from its classical metabolic function, may be a promising target for inhibition of bacteria-induced inflammatory processes and life-saving treatments, assuming a novel role as an immunological player.
Settore MED/04 - Patologia Generale
Settore BIO/16 - Anatomia Umana
2008
http://www.jimmunol.org/content/181/10/7428.1.full
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/43873
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact