We describe the modification of reactive actin sulfhydryls by S-nitrosoglutathione. Kinetics of S-nitrosylation and denitrosylation suggest that only one cysteine of actin is involved in the reactions. By using the bifunctional sulfhydryl cross-linking reagent N,N'-1,4-phenylenebismaleimide and the monofunctional reagent N-iodoacetyl-N'-(5-sulpho-1-naphthyl)ethylenediamine, we identified this residue as Cys(374). The time course of filament formation followed by high-shear viscosity changes revealed that S-nitrosylated G-actin polymerizes less efficiently than native monomers. The observed decrease in specific viscosity at steady state is due mainly to a marked inhibition of filament end-to-end annealing and, partially, to a reduction in F-actin concentration. Finally, S-nitrosylated actin acts as nitric oxide donor showing a fast, potent vasodilating activity at unusually low concentrations, being comparable with that of low molecular weight nitrosothiols.

S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle / I. Dalle Donne, A. Milzani, D. Giustarini, P. Di Simplicio, R. Colombo, R. Rossi. - In: JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY. - ISSN 0142-4319. - 21:2(2000), pp. 171-181.

S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle

I. Dalle Donne;A. Milzani;R. Colombo;
2000

Abstract

We describe the modification of reactive actin sulfhydryls by S-nitrosoglutathione. Kinetics of S-nitrosylation and denitrosylation suggest that only one cysteine of actin is involved in the reactions. By using the bifunctional sulfhydryl cross-linking reagent N,N'-1,4-phenylenebismaleimide and the monofunctional reagent N-iodoacetyl-N'-(5-sulpho-1-naphthyl)ethylenediamine, we identified this residue as Cys(374). The time course of filament formation followed by high-shear viscosity changes revealed that S-nitrosylated G-actin polymerizes less efficiently than native monomers. The observed decrease in specific viscosity at steady state is due mainly to a marked inhibition of filament end-to-end annealing and, partially, to a reduction in F-actin concentration. Finally, S-nitrosylated actin acts as nitric oxide donor showing a fast, potent vasodilating activity at unusually low concentrations, being comparable with that of low molecular weight nitrosothiols.
Settore BIO/06 - Anatomia Comparata e Citologia
2000
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/39206
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 76
social impact