Intensity Modulated Radiotherapy (IMRT) is a technique in which the radiation fluence within each of the treatment beams is not uniformly distributed. This allows the patient dose to follow the boundaries even of a target volume of complex shape, and, virtually, to spare critical healthy organs at risk. The agreement between planned and delivered IMRT dose is verified by means of standard dosimetric methods such as film dosimetry or semiconductors array dosimetry. In this paper we compare the output of a commercial device using an array of diodes for IMRT absolute dose verification with the output of a gel dosimeter, composed by a 10x8 cm2 rectangular layer of a tissue-equivalent gel matrix in which a proper chemical dosimeter has been incorporated. The dose distribution is derived from the images of visible light transmittance, detected with a CCD camera before and after the gel exposure. The analysis was carried out on a single IMRT field chosen among those archived at the Istituto Nazionale Tumori of Milan. The radiation field was examined in an area common to both dosimeters. The agreement between the two detectors was good, as shown by analysis of dose profiles, especially for doses above 15-20 cGy. Gel dosimeter was in good agreement with the planned dose too, with a percentage of dosimeter points passing a dose to agreement test ranging between 90 to 93%. Although preliminary, our data suggest that gel dosimetry is a reliable method for IMRT dose verification. Due to the good spatial resolution and to the tissue equivalent properties of its composition, it would be suitable also for 3D IMRT dose reconstruction and verification in the form of multiple piled-up gel layers.

Gel-layer dosimetry for dose verification in intensity-modulated radiation therapy / S. Tomatis, M. Carrara, G. Gambarini, R. Marchesini, M.A. Valente. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - 580:1(2007), pp. 506-509.

Gel-layer dosimetry for dose verification in intensity-modulated radiation therapy

M. Carrara
Secondo
;
G. Gambarini;M.A. Valente
Ultimo
2007

Abstract

Intensity Modulated Radiotherapy (IMRT) is a technique in which the radiation fluence within each of the treatment beams is not uniformly distributed. This allows the patient dose to follow the boundaries even of a target volume of complex shape, and, virtually, to spare critical healthy organs at risk. The agreement between planned and delivered IMRT dose is verified by means of standard dosimetric methods such as film dosimetry or semiconductors array dosimetry. In this paper we compare the output of a commercial device using an array of diodes for IMRT absolute dose verification with the output of a gel dosimeter, composed by a 10x8 cm2 rectangular layer of a tissue-equivalent gel matrix in which a proper chemical dosimeter has been incorporated. The dose distribution is derived from the images of visible light transmittance, detected with a CCD camera before and after the gel exposure. The analysis was carried out on a single IMRT field chosen among those archived at the Istituto Nazionale Tumori of Milan. The radiation field was examined in an area common to both dosimeters. The agreement between the two detectors was good, as shown by analysis of dose profiles, especially for doses above 15-20 cGy. Gel dosimeter was in good agreement with the planned dose too, with a percentage of dosimeter points passing a dose to agreement test ranging between 90 to 93%. Although preliminary, our data suggest that gel dosimetry is a reliable method for IMRT dose verification. Due to the good spatial resolution and to the tissue equivalent properties of its composition, it would be suitable also for 3D IMRT dose reconstruction and verification in the form of multiple piled-up gel layers.
Dose comparison; Gel layer dosimetry; IMRT dose verification; Semiconductor array detectors; Treatment planning system
Settore FIS/01 - Fisica Sperimentale
2007
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/38372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact