Despite growing concern about electromagnetic radiation, the interaction between 50- to 60-Hz fields and biological structures remains obscure. Epidemiological studies have failed to prove a significantly correlation between exposure to radiation fields and particular pathologies. We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: It antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions.

Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation / R. Tonini, M.D. Baroni, E. Masala, M. Micheletti, A. Ferroni, M. Mazzanti. - In: BIOPHYSICAL JOURNAL. - ISSN 0006-3495. - 81:5(2001), pp. 2580-2589.

Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation

R. Tonini
Primo
;
M.D. Baroni;A. Ferroni
Penultimo
;
M. Mazzanti
Ultimo
2001

Abstract

Despite growing concern about electromagnetic radiation, the interaction between 50- to 60-Hz fields and biological structures remains obscure. Epidemiological studies have failed to prove a significantly correlation between exposure to radiation fields and particular pathologies. We demonstrate that a 50- to 60-Hz magnetic field interacts with cell differentiation through two opposing mechanisms: It antagonizes the shift in cell membrane surface charges that occur during the early phases of differentiation and it modulates hyperpolarizing K channels by increasing intracellular Ca. The simultaneous onset of both mechanisms prevents alterations in cell differentiation. We propose that cells are normally protected against electromagnetic insult. Pathologies may arise, however, if intracellular Ca regulation or K channel activation malfunctions.
2001
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/29418
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 33
social impact