Several models of varying complexity have been used to predict pollutant concentrations in the higher levels of the food web from those in lower levels, but the role of the biomagnification process in aquatic food chains is still controversial. We used the fugacity-based approach to verify the transfer of PCBs through the pelagic food chain of Lake Iseo (N. Italy), sampling several zebra mussel specimens and some fish belonging of different trophic levels. The zebra mussel seems to be a suitable starting species for modelling the bioaccumulation process through the trophic web, not only because its physiological characteristics and population size do not change much with time (as do algae and zooplankton) but also because it takes up toxicants exclusively from the water, as shown by the application of two predictive trophic models commonly used. The data provided by one of those models were in good agreement with our experimental data on fish in Lake Iseo, that show a not negligible uptake from food for the top predator species (pike and perch) with an increase of about three times in comparison with the PCB levels measured in the zebra mussel specimens.

The PCB pollution of L. Iseo (N. Italy) and the role of biomagnification in the pelagic food web / A. Binelli, A. Provini. - In: CHEMOSPHERE. - ISSN 0045-6535. - 53:2(2003), pp. 143-151. [10.1016/S0045-6535(03)00441-7]

The PCB pollution of L. Iseo (N. Italy) and the role of biomagnification in the pelagic food web

A. Binelli
Primo
;
A. Provini
Ultimo
2003

Abstract

Several models of varying complexity have been used to predict pollutant concentrations in the higher levels of the food web from those in lower levels, but the role of the biomagnification process in aquatic food chains is still controversial. We used the fugacity-based approach to verify the transfer of PCBs through the pelagic food chain of Lake Iseo (N. Italy), sampling several zebra mussel specimens and some fish belonging of different trophic levels. The zebra mussel seems to be a suitable starting species for modelling the bioaccumulation process through the trophic web, not only because its physiological characteristics and population size do not change much with time (as do algae and zooplankton) but also because it takes up toxicants exclusively from the water, as shown by the application of two predictive trophic models commonly used. The data provided by one of those models were in good agreement with our experimental data on fish in Lake Iseo, that show a not negligible uptake from food for the top predator species (pike and perch) with an increase of about three times in comparison with the PCB levels measured in the zebra mussel specimens.
Bioaccumulation; Dreissena polymorpha; Italian lakes; PCB; Trophic model; Trophic web
Settore BIO/07 - Ecologia
2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/25136
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 55
social impact