This is an exploratory study on the high-pressure (HP) structural evolution of a zeolitic framework (with LEV topology) on the basis of geometric modelling and previously published accurate unit-cell constants measured by means of single-crystal X-ray diffraction. The geometric simulations for 11 P values from 0 to 5 GPa gives more insight into the HP-behaviour of levyne, showing that the anomalous elastic behaviour of this zeolite observed under hydrostatic conditions at low P (P<1 GPa) is due to a double change in the compressional mechanism. Since the geometric simulation is not restricted to using the experimentally determined cell parameters, simulations of uniaxial compression along the [001] direction and of compression in the (001) plane have been performed, shedding more light on the compression mechanisms under non-hydrostatic regimes, which are difficult to access experimentally. The mechanisms associated with compressions along different axes provide insight into the hydrostatic compression mechanisms leading to the anomalous elastic behaviour.

Structural evolution of zeolite levyne under hydrostatic and non-hydrostatic pressure: geometric modelling / G.D. GATTA, S.A. WELLS. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - 33:4(2006), pp. 243-255.

Structural evolution of zeolite levyne under hydrostatic and non-hydrostatic pressure: geometric modelling

G.D. GATTA
Primo
;
2006

Abstract

This is an exploratory study on the high-pressure (HP) structural evolution of a zeolitic framework (with LEV topology) on the basis of geometric modelling and previously published accurate unit-cell constants measured by means of single-crystal X-ray diffraction. The geometric simulations for 11 P values from 0 to 5 GPa gives more insight into the HP-behaviour of levyne, showing that the anomalous elastic behaviour of this zeolite observed under hydrostatic conditions at low P (P<1 GPa) is due to a double change in the compressional mechanism. Since the geometric simulation is not restricted to using the experimentally determined cell parameters, simulations of uniaxial compression along the [001] direction and of compression in the (001) plane have been performed, shedding more light on the compression mechanisms under non-hydrostatic regimes, which are difficult to access experimentally. The mechanisms associated with compressions along different axes provide insight into the hydrostatic compression mechanisms leading to the anomalous elastic behaviour.
zeolite; levyne; high-pressure; structural evolution; geometric simulation
Settore GEO/09 - Georisorse Miner.Appl.Mineral.-Petrogr.per l'amb.e i Beni Cul
2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/22444
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 0
social impact