The formation of clusters in condition of thermodynamic equilibrium can be easily observed both in two and three dimensions. In two dimensions relevant cases include pattern formation in Langmuir monolayers and ferrofluids, while in three dimensions cluster phases have been observed in colloids and in protein solutions. We have analyzed the problem within the scenario of competing interactions: typically, a short-range attractive interaction against a long-range repulsive one. This simplified approach is suggested by the fact that the forces, governing self-organization, act on a length scale which is larger than the molecular size; as a consequence many specific details of the molecules of interest are not necessary for studying the general features of microphases. We have tackled the microphase formation by simulations in bidimensional fluids, exploiting the parallel tempering scheme. In particular, we have analyzed the density range in which the particles arrange in circular domains (droplets), and the temperature range in which the system goes from microphases to the homogeneous fluid phase. As the density increases, the droplet size increases as well, but above a certain density the morphology changes and stripes are formed. Moreover at low density, we observe the formation of a liquidlike phase of disordered droplets; at higher densities, instead, the droplets tend to arrange onto a triangular superlattice. Such a change affects the features of the static structure factor, which gives well defined signatures of the microphase morphology. In each case, the specific heat exhibits a peak close to the transition from microphases to the homogeneous fluid phase, which is due to the breaking up of the clusters. The saturation of the height of the specific heat peak, with the increasing of the system size, suggests the possibility of a Kosterlitz-Thouless transition.

Microphase separation in two-dimensional systems with competing interactions / A. Imperio, L. Reatto. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - 124:16(2006), pp. 164712.164712-1-164712.164712-10.

Microphase separation in two-dimensional systems with competing interactions

A. Imperio
Primo
;
L. Reatto
Ultimo
2006

Abstract

The formation of clusters in condition of thermodynamic equilibrium can be easily observed both in two and three dimensions. In two dimensions relevant cases include pattern formation in Langmuir monolayers and ferrofluids, while in three dimensions cluster phases have been observed in colloids and in protein solutions. We have analyzed the problem within the scenario of competing interactions: typically, a short-range attractive interaction against a long-range repulsive one. This simplified approach is suggested by the fact that the forces, governing self-organization, act on a length scale which is larger than the molecular size; as a consequence many specific details of the molecules of interest are not necessary for studying the general features of microphases. We have tackled the microphase formation by simulations in bidimensional fluids, exploiting the parallel tempering scheme. In particular, we have analyzed the density range in which the particles arrange in circular domains (droplets), and the temperature range in which the system goes from microphases to the homogeneous fluid phase. As the density increases, the droplet size increases as well, but above a certain density the morphology changes and stripes are formed. Moreover at low density, we observe the formation of a liquidlike phase of disordered droplets; at higher densities, instead, the droplets tend to arrange onto a triangular superlattice. Such a change affects the features of the static structure factor, which gives well defined signatures of the microphase morphology. In each case, the specific heat exhibits a peak close to the transition from microphases to the homogeneous fluid phase, which is due to the breaking up of the clusters. The saturation of the height of the specific heat peak, with the increasing of the system size, suggests the possibility of a Kosterlitz-Thouless transition.
drops; Langmuir-Blodgett films; magnetic fluids; molecular biophysics; monolayers; pattern formation; phase separation; proteins; specific heat
Settore FIS/03 - Fisica della Materia
2006
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/22220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 106
social impact