Proto-TRK and proto-RET genes encode receptor type tyrosine kinases. Oncogenic rearrangements of both proto-oncogenes have been detected with a significant frequency in human papillary thyroid carcinomas. Chimeric Ret and Trk oncoproteins, encoded by different rearrangements of proto-TRK and proto-RET genes, display a constitutive phosphorylation on tyrosine. Moreover, it has been shown that phosphorylated tyrosine receptors, activated by their ligands, form multiprotein complexes responsible for transducing mitogenic or differentiation signals. We have therefore begun to analyse in this study the signal transduction pathways triggered by different Ret and Trk oncoproteins. We have shown that the SH2 domain of the adaptor protein Shc coimmunoprecipitates with all the Ret and Trk oncoproteins as well as with NGF-activated proto-Trk receptor. Tyrosine phosphorylation of Trk proteins both normal and oncogenic is necessary for their binding to Shc. In addition, in cells containing either Ret or Trk oncoproteins, Shc proteins are constitutively phosphorylated on tyrosine and bound to Grb2. Only in in vitro experiments were Ret and Trk oncoproteins shown to bind the SH2 region of Grb2. Finally, when proto-Trk product is stimulated by NGF, Shc phosphorylation and association with Grb2 are induced. In conclusion, we have shown that Ret and Trk oncoproteins can form multiprotein complexes, however, the functional meaning of the described interactions has to be elucidated.

The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins / M. G. Borrello, G. Pelicci, E. Arighi, L. De Filippis, A. Greco, I. Bongarzone, M. Rizzetti, P. G. Pelicci, M. A. Pierotti. - In: ONCOGENE. - ISSN 0950-9232. - 9:6(1994 Jun), pp. 1661-8-1668.

The oncogenic versions of the Ret and Trk tyrosine kinases bind Shc and Grb2 adaptor proteins

P. G. Pelicci
Secondo
;
1994

Abstract

Proto-TRK and proto-RET genes encode receptor type tyrosine kinases. Oncogenic rearrangements of both proto-oncogenes have been detected with a significant frequency in human papillary thyroid carcinomas. Chimeric Ret and Trk oncoproteins, encoded by different rearrangements of proto-TRK and proto-RET genes, display a constitutive phosphorylation on tyrosine. Moreover, it has been shown that phosphorylated tyrosine receptors, activated by their ligands, form multiprotein complexes responsible for transducing mitogenic or differentiation signals. We have therefore begun to analyse in this study the signal transduction pathways triggered by different Ret and Trk oncoproteins. We have shown that the SH2 domain of the adaptor protein Shc coimmunoprecipitates with all the Ret and Trk oncoproteins as well as with NGF-activated proto-Trk receptor. Tyrosine phosphorylation of Trk proteins both normal and oncogenic is necessary for their binding to Shc. In addition, in cells containing either Ret or Trk oncoproteins, Shc proteins are constitutively phosphorylated on tyrosine and bound to Grb2. Only in in vitro experiments were Ret and Trk oncoproteins shown to bind the SH2 region of Grb2. Finally, when proto-Trk product is stimulated by NGF, Shc phosphorylation and association with Grb2 are induced. In conclusion, we have shown that Ret and Trk oncoproteins can form multiprotein complexes, however, the functional meaning of the described interactions has to be elucidated.
3T3 Cells; Animals; Oncogene Proteins; Tyrosine; Amino Acid Sequence; Mice; Receptor Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-ret; Phosphorylation; Adaptor Proteins, Signal Transducing; GRB2 Adaptor Protein; Drosophila Proteins; Molecular Sequence Data; Proteins; Cell Transformation, Neoplastic; Signal Transduction
Settore MED/04 - Patologia Generale
giu-1994
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/196377
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 116
  • ???jsp.display-item.citation.isi??? ND
social impact