Neuropeptide-Y (NPY) and glucocorticoid receptors are coexpressed in many neurons in the brain. We addressed the question: Do glucocorticoids regulate the accumulation and/or secretion of immunoreactive (IR) NPY by fetal rat brain cells in culture, and if so, is the effect developmental stage dependent? Aggregates, formed from dissociated cells obtained from the hypothalamus-olfactory tubercle of 17-day-old fetuses, were cultured in serum-free medium for 23 days. On day 23, the aggregate NPY content was 6 ng/flask, and secretion (last 2 days) was approximately 12 ng/24 h. Exposure to dexamethasone (Dex; 20 nM) between days 0-23 led to a 1.9-fold increase in the aggregate content of NPY, whereas NPY secretion was not altered. When Dex exposure was limited to days 12-23, 16-23, 19-23, or 21-23, only a 12- to 23-day exposure induced NPY accumulation, and it was as effective as a 0- to 23-day exposure. The Dex-induced increase in NPY content was evident after a lag period of 4 days or more. When Dex exposure occurred on days 0-12, the aggregate NPY content on day 12 or 23 was not altered. None of these treatments altered the aggregate/medium content of immunoreactive somatostatin (SRIF) or the response to a 48-h exposure to forskolin (10 μM). Dex induction of NPY accumulation was a saturable function of the Dex concentration (maximal at 20 nM), and it was completely inhibited by RU486, a glucocorticoid/progesterone receptor antagonist; neither progesterone, 17β-estradiol, nor testosterone altered aggregate/medium NPY contents. Protein/DNA contents of the aggregates were either unaffected or slightly reduced by Dex. Thus, 1) Dex stimulates the accumulation of immunoreactive NPY, but not SRIF, by cultured fetal brain cells; 2) this effect requires a continuous 8-12 days of exposure to Dex during a late developmental stage in culture; 3) Dex does not potentiate or attenuate forskolin action on the NPY neuron; and 4) Dex action appears to be mediated by the glucocorticoid receptor. These results are consistent with glucocorticoid induction of production and/or decreased intracellular degradation of NPY, and with glucocorticoids regulating the NPY neuron in the perinatal brain in a developmental age-dependent manner.

Dexamethasone induced accumulation of neuropeptide Y by aggregating fetal brain cells in culture: a process dependent on the developmental age of the aggregates / A. Barnea, G. Cho, A. Hajibeigi, M.C. Aguila, P. Magni. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - 129:2(1991), pp. 931-938.

Dexamethasone induced accumulation of neuropeptide Y by aggregating fetal brain cells in culture: a process dependent on the developmental age of the aggregates

P. Magni
Ultimo
1991

Abstract

Neuropeptide-Y (NPY) and glucocorticoid receptors are coexpressed in many neurons in the brain. We addressed the question: Do glucocorticoids regulate the accumulation and/or secretion of immunoreactive (IR) NPY by fetal rat brain cells in culture, and if so, is the effect developmental stage dependent? Aggregates, formed from dissociated cells obtained from the hypothalamus-olfactory tubercle of 17-day-old fetuses, were cultured in serum-free medium for 23 days. On day 23, the aggregate NPY content was 6 ng/flask, and secretion (last 2 days) was approximately 12 ng/24 h. Exposure to dexamethasone (Dex; 20 nM) between days 0-23 led to a 1.9-fold increase in the aggregate content of NPY, whereas NPY secretion was not altered. When Dex exposure was limited to days 12-23, 16-23, 19-23, or 21-23, only a 12- to 23-day exposure induced NPY accumulation, and it was as effective as a 0- to 23-day exposure. The Dex-induced increase in NPY content was evident after a lag period of 4 days or more. When Dex exposure occurred on days 0-12, the aggregate NPY content on day 12 or 23 was not altered. None of these treatments altered the aggregate/medium content of immunoreactive somatostatin (SRIF) or the response to a 48-h exposure to forskolin (10 μM). Dex induction of NPY accumulation was a saturable function of the Dex concentration (maximal at 20 nM), and it was completely inhibited by RU486, a glucocorticoid/progesterone receptor antagonist; neither progesterone, 17β-estradiol, nor testosterone altered aggregate/medium NPY contents. Protein/DNA contents of the aggregates were either unaffected or slightly reduced by Dex. Thus, 1) Dex stimulates the accumulation of immunoreactive NPY, but not SRIF, by cultured fetal brain cells; 2) this effect requires a continuous 8-12 days of exposure to Dex during a late developmental stage in culture; 3) Dex does not potentiate or attenuate forskolin action on the NPY neuron; and 4) Dex action appears to be mediated by the glucocorticoid receptor. These results are consistent with glucocorticoid induction of production and/or decreased intracellular degradation of NPY, and with glucocorticoids regulating the NPY neuron in the perinatal brain in a developmental age-dependent manner.
somatostatine-like immunoreactivity; glucocorticoid receptor system; central nervous-system; rat limbic brain; biochemical differentiation; immunohistochemical analysis; adrenalectomized rats; containing neurons; olfactory-bulb; phorbol ester
Settore MED/05 - Patologia Clinica
Settore MED/04 - Patologia Generale
Settore MED/13 - Endocrinologia
Settore BIO/14 - Farmacologia
Settore MED/46 - Scienze Tecniche di Medicina di Laboratorio
Settore MED/49 - Scienze Tecniche Dietetiche Applicate
1991
Article (author)
File in questo prodotto:
File Dimensione Formato  
endo0931.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/195974
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact