C1-inhibitor(Mo), a dysfunctional C1-inhibitor molecule produced in two kindred with type II hereditary angioedema, has a mutation at the P10 position (Ala436 to Thr). Like most serpins with hinge region mutations (P14, P12, P10), C1-inhibitor(Mo) loses its inhibitory activity. However, unlike the other hinge region mutations, this mutant is not converted to a substrate. As shown by nondenaturing gel electrophoresis, gel filtration, sucrose density gradient ultracentrifugation, and electron microscopy, C1-inhibitor(Mo) exists in both monomeric and multimeric forms. Polymerization probably results from reactive center loop insertion into the A sheet of an adjacent molecule. Native C1-inhibitor(Mo) was shown to have a thermal stability profile intermediate to those of intact and of cleaved normal C1-inhibitor. Native C1-inhibitor(Mo) did not bind to monoclonal antibody KII, which binds only to reactive center-cleaved normal C1-inhibitor. It did, however, react with monoclonal antibody KOK12, which recognizes complexed or cleaved C1-inhibitor but not intact normal C1-inhibitor. Native C1-inhibitor(Mo), therefore, exists in a conformation similar to the complexed form of normal C1-inhibitor.

A hinge region mutation in C1-inhibitor (Ala436-->Thr) results innonsubstrate-like behavior and in polymerization of the molecule / K.S. Aulak, E. Eldering, C.E. Hack, Y.P. Lubbers, R.A. Harrison, A. Mast, M. Cicardi, A.E. Davis. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 268:24(1993), pp. 18088-18094.

A hinge region mutation in C1-inhibitor (Ala436-->Thr) results innonsubstrate-like behavior and in polymerization of the molecule

M. Cicardi
Penultimo
;
1993

Abstract

C1-inhibitor(Mo), a dysfunctional C1-inhibitor molecule produced in two kindred with type II hereditary angioedema, has a mutation at the P10 position (Ala436 to Thr). Like most serpins with hinge region mutations (P14, P12, P10), C1-inhibitor(Mo) loses its inhibitory activity. However, unlike the other hinge region mutations, this mutant is not converted to a substrate. As shown by nondenaturing gel electrophoresis, gel filtration, sucrose density gradient ultracentrifugation, and electron microscopy, C1-inhibitor(Mo) exists in both monomeric and multimeric forms. Polymerization probably results from reactive center loop insertion into the A sheet of an adjacent molecule. Native C1-inhibitor(Mo) was shown to have a thermal stability profile intermediate to those of intact and of cleaved normal C1-inhibitor. Native C1-inhibitor(Mo) did not bind to monoclonal antibody KII, which binds only to reactive center-cleaved normal C1-inhibitor. It did, however, react with monoclonal antibody KOK12, which recognizes complexed or cleaved C1-inhibitor but not intact normal C1-inhibitor. Native C1-inhibitor(Mo), therefore, exists in a conformation similar to the complexed form of normal C1-inhibitor.
Settore MED/09 - Medicina Interna
1993
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/192940
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 107
social impact