The water-soluble carbodiimide, N-ethyl-3-(3-dimethylaminopropyl)carbodiimide was found to readily promote formation of cross-links between spinach ferredoxin-NADP+ reductase and bacterial flavodoxins. The covalent complex between ferredoxin-NADP+ reductase and the Desulfovibrio vulgaris flavodoxin had a stoichiometry of 1 mol of flavodoxin per mole of the reductase, as assessed by denaturing electrophoresis, gel filtration and spectral analysis. The reductase moiety of the cross-linked complex gained the capacity to catalyze at a high rate the electron transfer from NADPH to cytochrome c without addition of free flavodoxin in the assay. The pH optimum for this activity was shifted to the alkaline region with respect to that for the noncovalent complex. FMN, the prosthetic group of flavodoxin, is required for electron transfer from the reductase FAD to cytochrome c. Structural studies carried out on the cross-linked complex allowed the identification of the peptide regions of the proteins involved in the interaction. The CNBr peptide 61-155 of the reductase was found cross-linked to the uncleaved flavodoxin, while the cross-linked region in flavodoxin appeared to be within the tryptic peptide 37-86. Treatment of flavodoxin with the carbodiimide in the presence of glycine ethyl ester brought about the modification of a few carboxyl groups and prevented its interaction with the reductase. It can be concluded that the bacterial flavodoxin binds to the reductase in a way similar to that of the physiological substrate ferredoxin (G. Zanetti, D. Morelli, S. Ronchi, A. Negri, A. Aliverti, and B. Curti, 1988, Biochemistry 27, 3753-3759). The cross-linked complex here described represents an useful model for studying electron transfer between the two flavoproteins.

A functional heterologous electron-transfer protein complex: Desulfovibrio vulgaris flavodoxin covalently linked to spinach ferredoxin-NADP+ reductase / M.C. Pirola, F. Monti, A. Aliverti, G. Zanetti. - In: ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS. - ISSN 0003-9861. - 311:2(1994 Jun), pp. 480-486.

A functional heterologous electron-transfer protein complex: Desulfovibrio vulgaris flavodoxin covalently linked to spinach ferredoxin-NADP+ reductase

A. Aliverti
Penultimo
;
G. Zanetti
Ultimo
1994

Abstract

The water-soluble carbodiimide, N-ethyl-3-(3-dimethylaminopropyl)carbodiimide was found to readily promote formation of cross-links between spinach ferredoxin-NADP+ reductase and bacterial flavodoxins. The covalent complex between ferredoxin-NADP+ reductase and the Desulfovibrio vulgaris flavodoxin had a stoichiometry of 1 mol of flavodoxin per mole of the reductase, as assessed by denaturing electrophoresis, gel filtration and spectral analysis. The reductase moiety of the cross-linked complex gained the capacity to catalyze at a high rate the electron transfer from NADPH to cytochrome c without addition of free flavodoxin in the assay. The pH optimum for this activity was shifted to the alkaline region with respect to that for the noncovalent complex. FMN, the prosthetic group of flavodoxin, is required for electron transfer from the reductase FAD to cytochrome c. Structural studies carried out on the cross-linked complex allowed the identification of the peptide regions of the proteins involved in the interaction. The CNBr peptide 61-155 of the reductase was found cross-linked to the uncleaved flavodoxin, while the cross-linked region in flavodoxin appeared to be within the tryptic peptide 37-86. Treatment of flavodoxin with the carbodiimide in the presence of glycine ethyl ester brought about the modification of a few carboxyl groups and prevented its interaction with the reductase. It can be concluded that the bacterial flavodoxin binds to the reductase in a way similar to that of the physiological substrate ferredoxin (G. Zanetti, D. Morelli, S. Ronchi, A. Negri, A. Aliverti, and B. Curti, 1988, Biochemistry 27, 3753-3759). The cross-linked complex here described represents an useful model for studying electron transfer between the two flavoproteins.
protein ; flavoprotein ; iron-sulfur protein ; iron-sulfur cluster ; flavin nucleotide ; nicotinamide nucleotide ; electron transfer ; photosyntesis ; biological oxidoreduction ; hydride transfer ; protein engineering ; protein-protein interaction
Settore BIO/10 - Biochimica
Settore BIO/11 - Biologia Molecolare
giu-1994
http://www.sciencedirect.com/science/article/pii/S0003986184712653
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/191913
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact