The solution structure of ganglioside G(M1) carbohydrate moiety at the surface of a 102-kDa lipid-modified-G(M1) micelle is investigated by high-resolution H-1-NMR in H2O. The micellar surface can be considered a cluster-like lateral distribution of the gangliosides, each single monomer being anchored in a carbohydrate-enriched model membrane matrix. H-1 NOESY measurements at short mixing times reveal a rigid trisaccharide core -beta-GalNAc-(1-4)-[alpha-Neu5Ac-(2-3)]-beta-Gal- and a more flexible beta-Gal-(1-3)-beta-GalNAc- terminal glycosidic bond. in the lipid-modified G(M1) ganglioside micellar system, there is no evidence that intermolecular side-by-side carbohydrate interactions modulate, or alter in any way, the head-group spatial arrangement. Possible intermonomer interactions at the level of the branched trisaccharide portion were further investigated on mixed micelles of natural N-glycolyl- and N-acetylneuraminic acid containing G(M1) in D2O, taking advantage of the different NMR features of N-glycoyl- and N-acetylneuraminic acids, which allow discrimination between sialic acid ring proton signals. Measurements of the water/ganglioside-OH proton chemical exchange rates suggest hydroxyl group involvement at position 8 of sialic acid in strong intramolecular interaction processes.

Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface / P. Brocca, P. Berthault, S. Sonnino. - In: BIOPHYSICAL JOURNAL. - ISSN 0006-3495. - 74:1(1998), pp. 309-318.

Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface

P. Brocca
Primo
;
S. Sonnino
Ultimo
1998

Abstract

The solution structure of ganglioside G(M1) carbohydrate moiety at the surface of a 102-kDa lipid-modified-G(M1) micelle is investigated by high-resolution H-1-NMR in H2O. The micellar surface can be considered a cluster-like lateral distribution of the gangliosides, each single monomer being anchored in a carbohydrate-enriched model membrane matrix. H-1 NOESY measurements at short mixing times reveal a rigid trisaccharide core -beta-GalNAc-(1-4)-[alpha-Neu5Ac-(2-3)]-beta-Gal- and a more flexible beta-Gal-(1-3)-beta-GalNAc- terminal glycosidic bond. in the lipid-modified G(M1) ganglioside micellar system, there is no evidence that intermolecular side-by-side carbohydrate interactions modulate, or alter in any way, the head-group spatial arrangement. Possible intermonomer interactions at the level of the branched trisaccharide portion were further investigated on mixed micelles of natural N-glycolyl- and N-acetylneuraminic acid containing G(M1) in D2O, taking advantage of the different NMR features of N-glycoyl- and N-acetylneuraminic acids, which allow discrimination between sialic acid ring proton signals. Measurements of the water/ganglioside-OH proton chemical exchange rates suggest hydroxyl group involvement at position 8 of sialic acid in strong intramolecular interaction processes.
Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin)
Settore BIO/10 - Biochimica
1998
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/190093
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 73
social impact