Photosystem I of higher plants functions in photosynthesis as a light-driven oxidoreductase producing reduced ferredoxin. Its peripheral subunit PsaD has been identified as the docking site for ferredoxin I. With the aim of elucidating the structure-function relationship and the role of this subunit, a recombinant form of the spinach protein was produced by heterologous expression in Escherichia coli. The PsaD protein was synthesized in soluble form and purified to homogeneity. The interaction of the PsaD subunit with ferredoxin I was investigated using three different approaches: chemical cross-linking between the two purified proteins in solution, affinity chromatography of the PsaD subunit on a ferredoxin-coupled resin, and titration with ferredoxin of the protein fluorescence of the subunit. All these studies indicated that the isolated PsaD in solution has a definite conformation and maintains the ability to bind ferredoxin I with high affinity and specificity. The Kd value of the complex of PsaD and ferredoxin is in the nanomolar range, which is consistent with reported Km values for ferredoxin I photoreduction by thylakoid membranes. The ionic strength dependence of the K(d) suggests that the protein-protein interaction is at least partially electrostatic in nature. Nevertheless, none of the glutamate residues of the acidic cluster of residues 92-94 of ferredoxin I, which have been reported to be involved in the interaction with the subunit, seems to be essential for PsaD binding, as borne out by experiments using ferredoxin I mutants in positions 92-94.

Interaction of the soluble recombinant PsaD subunit of spinach photosystem I with ferredoxin I / V. Pandini, A. Aliverti, G. Zanetti. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 38:33(1999 Aug 17), pp. 10707-10713.

Interaction of the soluble recombinant PsaD subunit of spinach photosystem I with ferredoxin I

V. Pandini
Primo
;
A. Aliverti
Secondo
;
G. Zanetti
Ultimo
1999

Abstract

Photosystem I of higher plants functions in photosynthesis as a light-driven oxidoreductase producing reduced ferredoxin. Its peripheral subunit PsaD has been identified as the docking site for ferredoxin I. With the aim of elucidating the structure-function relationship and the role of this subunit, a recombinant form of the spinach protein was produced by heterologous expression in Escherichia coli. The PsaD protein was synthesized in soluble form and purified to homogeneity. The interaction of the PsaD subunit with ferredoxin I was investigated using three different approaches: chemical cross-linking between the two purified proteins in solution, affinity chromatography of the PsaD subunit on a ferredoxin-coupled resin, and titration with ferredoxin of the protein fluorescence of the subunit. All these studies indicated that the isolated PsaD in solution has a definite conformation and maintains the ability to bind ferredoxin I with high affinity and specificity. The Kd value of the complex of PsaD and ferredoxin is in the nanomolar range, which is consistent with reported Km values for ferredoxin I photoreduction by thylakoid membranes. The ionic strength dependence of the K(d) suggests that the protein-protein interaction is at least partially electrostatic in nature. Nevertheless, none of the glutamate residues of the acidic cluster of residues 92-94 of ferredoxin I, which have been reported to be involved in the interaction with the subunit, seems to be essential for PsaD binding, as borne out by experiments using ferredoxin I mutants in positions 92-94.
protein ; protein fold ; photosystem ; protein-protein interaction ; photosynthesis ; electron transfer ; biological oxidation
Settore BIO/10 - Biochimica
Settore BIO/11 - Biologia Molecolare
Settore BIO/04 - Fisiologia Vegetale
17-ago-1999
http://pubs.acs.org/doi/abs/10.1021/bi990423h
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/189882
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact