In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)

THE SIALIC-ACID RESIDUE OF EXOGENOUS GM1 GANGLIOSIDE IS RECYCLED FOR BIOSYNTHESIS OF SIALOGLYCOCONJUGATES IN RAT-LIVER / R. GHIDONI, M. TRINCHERA, S. SONNINO, V. CHIGORNO, G. TETTAMANTI. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - 247:1(1987), pp. 157-164. [10.1042/bj2470157]

THE SIALIC-ACID RESIDUE OF EXOGENOUS GM1 GANGLIOSIDE IS RECYCLED FOR BIOSYNTHESIS OF SIALOGLYCOCONJUGATES IN RAT-LIVER

R. GHIDONI
Primo
;
S. SONNINO;V. CHIGORNO
Penultimo
;
1987

Abstract

In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)
Settore BIO/10 - Biochimica
1987
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/187387
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 37
social impact