To determine whether the ability of testosterone to increase intrahypothalamic LH-releasing hormone (LHRH) in orchidectomized rats might be explained by the conversion of the hormone into either its 5α-reduced or oestrogenic metabolites, testosterone, 5α-androstan-17β-ol-3-one (DHT), 5α-androstane-3α,17β-diol (3α-diol) and 5α-androstane-3β,17β-diol (3β-diol) (2 mg/rat per day for 6 days) and oestradiol (0.1, 0.5, 1.0 and 5.0 μg/rat per day for 6 days) were injected into castrated male rats. After 6 days the rats were killed and serum LH levels and intrahypothalamic LHRH stores measured using specific radioimmunoassay procedures. Testosterone and its 5α-reduced metabolites were used in either the free alcohol or the propionate form (dipropionates in the case of the diols); oestradiol was used as oestradiol-17β or in the benzoate form. Treatment with testosterone, DHT, 3α-diol and 3β-diol resulted in a significant decrease in serum LH levels; all the 5α-reduced testosterone derivatives were more effective than testosterone in this respect. Testosterone and DHT propionates suppressed LH release following orchidectomy totally; 3α-diol and 3β-diol dipropionates were less effective. Testosterone increased intrahypothalamic LHRH stores, this effect being much higher after testosterone propionate, i.e. when intrahypothalamic LHRH stores were restored to pre-castration levels. None of the 5α-reduced steroids was capable of modifying the low intrahypothalamic levels of LHRH found following orchidectomy; only 3α-diol dipropionate exhibited some activity, but this was much lower than that of testosterone propionate. Oestradiol-17β was totally ineffective in decreasing serum LH in orchidectomized animals; in contrast, oestradiol benzoate progressively decreased serum LH. Oestradiol in the free form was unable to increase LHRH stores, as was oestradiol benzoate except at the highest dose. The results suggest that the effect exerted by testosterone on hypothalamic LHRH is due to the hormone as such and does not involve its conversion into either 5α-reduced or oestrogenic metabolites.

TESTOSTERONE METABOLITES DO NOT PARTICIPATE IN THE CONTROL OF HYPOTHALAMIC LH-RELEASING HORMONE / M. ZANISI, F. CELOTTI, P. FERRABOSCHI, M. MOTTA. - In: JOURNAL OF ENDOCRINOLOGY. - ISSN 0022-0795. - 109:2(1986), pp. 291-296.

TESTOSTERONE METABOLITES DO NOT PARTICIPATE IN THE CONTROL OF HYPOTHALAMIC LH-RELEASING HORMONE

M. ZANISI
Primo
;
F. CELOTTI
Secondo
;
P. FERRABOSCHI
Penultimo
;
M. MOTTA
Ultimo
1986

Abstract

To determine whether the ability of testosterone to increase intrahypothalamic LH-releasing hormone (LHRH) in orchidectomized rats might be explained by the conversion of the hormone into either its 5α-reduced or oestrogenic metabolites, testosterone, 5α-androstan-17β-ol-3-one (DHT), 5α-androstane-3α,17β-diol (3α-diol) and 5α-androstane-3β,17β-diol (3β-diol) (2 mg/rat per day for 6 days) and oestradiol (0.1, 0.5, 1.0 and 5.0 μg/rat per day for 6 days) were injected into castrated male rats. After 6 days the rats were killed and serum LH levels and intrahypothalamic LHRH stores measured using specific radioimmunoassay procedures. Testosterone and its 5α-reduced metabolites were used in either the free alcohol or the propionate form (dipropionates in the case of the diols); oestradiol was used as oestradiol-17β or in the benzoate form. Treatment with testosterone, DHT, 3α-diol and 3β-diol resulted in a significant decrease in serum LH levels; all the 5α-reduced testosterone derivatives were more effective than testosterone in this respect. Testosterone and DHT propionates suppressed LH release following orchidectomy totally; 3α-diol and 3β-diol dipropionates were less effective. Testosterone increased intrahypothalamic LHRH stores, this effect being much higher after testosterone propionate, i.e. when intrahypothalamic LHRH stores were restored to pre-castration levels. None of the 5α-reduced steroids was capable of modifying the low intrahypothalamic levels of LHRH found following orchidectomy; only 3α-diol dipropionate exhibited some activity, but this was much lower than that of testosterone propionate. Oestradiol-17β was totally ineffective in decreasing serum LH in orchidectomized animals; in contrast, oestradiol benzoate progressively decreased serum LH. Oestradiol in the free form was unable to increase LHRH stores, as was oestradiol benzoate except at the highest dose. The results suggest that the effect exerted by testosterone on hypothalamic LHRH is due to the hormone as such and does not involve its conversion into either 5α-reduced or oestrogenic metabolites.
Settore BIO/10 - Biochimica
1986
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/181010
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact