Purified human apolipoprotein A-I (apoA-I), when mn across a transverse urea gradient at alkaline pH, gives a complex pattern characterized by a number of parallel sigmoidal curves, in which the transition between high- and low-mobility forms, i.e. from folded to unfolded structure, occurs between 1.1 and 3.2 M urea. Size differences appear to be the major cause of this isomerism. When migrated across a wide pH range in the presence of varying amounts of urea to display its titration curve, apoA-I is resolved into two pairs of bands, running parallel in the neutral to basic pH region while merging at acidic pH; such a finding does not correlate with a differential exposure of His residues, as shown by diethyl pyrocarbonate titration. Ferguson plot analysis, confirmed by cross-linking experiments, demonstrates a gradual shift from higher to lower mass aggregates as the urea concentration is raised; the monomeric form undergoes denaturation by swelling to an ≃50% larger hydrodynamic volume than in its native state. At alkaline pH, where apoA-I exists as aggregated species, disaggregation and unfolding appear to happen at once, the larger aggregates being less stable than the smaller ones. At acidic pH, apoA-I does not form aggregates and has little secondary structure; unfolding is then a progressive rather than a cooperative process.

Denaturation and self-association of apolipoprotein A-T investigated by electrophoretic techniques / E. Gianazza, L. Calabresi, O. Santi, C. Sirtori, G. Franceschini. - In: BIOCHEMISTRY. - ISSN 0006-2960. - 36:25(1997), pp. 7898-7905.

Denaturation and self-association of apolipoprotein A-T investigated by electrophoretic techniques

E. Gianazza
Primo
;
L. Calabresi
Secondo
;
C. Sirtori
Penultimo
;
G. Franceschini
Ultimo
1997

Abstract

Purified human apolipoprotein A-I (apoA-I), when mn across a transverse urea gradient at alkaline pH, gives a complex pattern characterized by a number of parallel sigmoidal curves, in which the transition between high- and low-mobility forms, i.e. from folded to unfolded structure, occurs between 1.1 and 3.2 M urea. Size differences appear to be the major cause of this isomerism. When migrated across a wide pH range in the presence of varying amounts of urea to display its titration curve, apoA-I is resolved into two pairs of bands, running parallel in the neutral to basic pH region while merging at acidic pH; such a finding does not correlate with a differential exposure of His residues, as shown by diethyl pyrocarbonate titration. Ferguson plot analysis, confirmed by cross-linking experiments, demonstrates a gradual shift from higher to lower mass aggregates as the urea concentration is raised; the monomeric form undergoes denaturation by swelling to an ≃50% larger hydrodynamic volume than in its native state. At alkaline pH, where apoA-I exists as aggregated species, disaggregation and unfolding appear to happen at once, the larger aggregates being less stable than the smaller ones. At acidic pH, apoA-I does not form aggregates and has little secondary structure; unfolding is then a progressive rather than a cooperative process.
Settore BIO/10 - Biochimica
1997
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/180950
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact