Radiolabeled leukotriene (LT) E4 was infused into three healthy subjects in order to assess the production and elimination of sulfidopeptide leukotriene metabolites in urine. Three different radiolabeled tracers were employed, [14,15-3H]LTE4, [35S]LTE4, and [14C] LTE4 in five separate infusion studies. There was a rapid disappearance of radioactivity from the vascular compartment in an apparent two-phase process. The first elimination phase had an apparent half-life of approximately 7 min. Radioactivity quickly appeared in the urine with 10-16% eliminated during the first 2 h following intravenous infusion; 7%, 2-5 h; 4%, 5-8 h; 4%, 8-15 h; and 1.5%, 15-24 h from the [14C] LTE4 experiments. Unmetabolized LTE4 was the major radioactive component in the first urine collection, but at later times two more polar compounds predominated. After extensive purification by normal phase-solid phase extraction and reverse-phase high performance liquid chromatography, these compounds were characterized by UV spectroscopy, co-elution with synthetic standards, negative ion electron capture gas chromatography/mass spectrometry, and tandem mass spectrometry. The two major urinary metabolites were structurally determined to be 14-carboxy-hexanor-LTE3 and the conjugated tetraene, 16-carboxy-Δ13-tetranor-LTE4. Three other minor metabolites were detectable in the first urine collection only and were characterized by co-elution with synthetic standards as 16-carboxy-tetranor-LTE3, 18-carboxy-dinor-LTE4, and 20-carboxy-LTE4. ω-Oxidation and subsequent β-oxidation from the methyl terminus appeared to be the major metabolic fate for sulfidopeptide leukotrienes in man. The accumulation of the 14-COOH-LTE3 and 16-COOH-Δ13-LTE4 may reflect a rate-limiting step in further oxidation of these compounds which places a conjugated triene or conjugated tetraene, respectively, two carbons removed from the CoA ester moiety. Also in the first urine collection there was another minor metabolite identified as N-acetyl-LTE4, however, no subsequent β-oxidation of this metabolite was observed. The major metabolites of LTE4 might be useful in assessing in vivo production of sulfidopeptide leukotrienes in humans.

Leukotriene E4 elimination and metabolism in normal human subjects / A. Sala, N. Voelkel, J. Maclouf, R. Murphy. - In: THE JOURNAL OF BIOLOGICAL CHEMISTRY. - ISSN 0021-9258. - 265:35(1990), pp. 21771-21778.

Leukotriene E4 elimination and metabolism in normal human subjects

A. Sala
Primo
;
1990

Abstract

Radiolabeled leukotriene (LT) E4 was infused into three healthy subjects in order to assess the production and elimination of sulfidopeptide leukotriene metabolites in urine. Three different radiolabeled tracers were employed, [14,15-3H]LTE4, [35S]LTE4, and [14C] LTE4 in five separate infusion studies. There was a rapid disappearance of radioactivity from the vascular compartment in an apparent two-phase process. The first elimination phase had an apparent half-life of approximately 7 min. Radioactivity quickly appeared in the urine with 10-16% eliminated during the first 2 h following intravenous infusion; 7%, 2-5 h; 4%, 5-8 h; 4%, 8-15 h; and 1.5%, 15-24 h from the [14C] LTE4 experiments. Unmetabolized LTE4 was the major radioactive component in the first urine collection, but at later times two more polar compounds predominated. After extensive purification by normal phase-solid phase extraction and reverse-phase high performance liquid chromatography, these compounds were characterized by UV spectroscopy, co-elution with synthetic standards, negative ion electron capture gas chromatography/mass spectrometry, and tandem mass spectrometry. The two major urinary metabolites were structurally determined to be 14-carboxy-hexanor-LTE3 and the conjugated tetraene, 16-carboxy-Δ13-tetranor-LTE4. Three other minor metabolites were detectable in the first urine collection only and were characterized by co-elution with synthetic standards as 16-carboxy-tetranor-LTE3, 18-carboxy-dinor-LTE4, and 20-carboxy-LTE4. ω-Oxidation and subsequent β-oxidation from the methyl terminus appeared to be the major metabolic fate for sulfidopeptide leukotrienes in man. The accumulation of the 14-COOH-LTE3 and 16-COOH-Δ13-LTE4 may reflect a rate-limiting step in further oxidation of these compounds which places a conjugated triene or conjugated tetraene, respectively, two carbons removed from the CoA ester moiety. Also in the first urine collection there was another minor metabolite identified as N-acetyl-LTE4, however, no subsequent β-oxidation of this metabolite was observed. The major metabolites of LTE4 might be useful in assessing in vivo production of sulfidopeptide leukotrienes in humans.
Settore BIO/14 - Farmacologia
1990
http://www.jbc.org/content/265/35/21771.long
Article (author)
File in questo prodotto:
File Dimensione Formato  
J. Biol. Chem.-1990-Sala-21771-8.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 972.71 kB
Formato Adobe PDF
972.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/180227
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 128
  • ???jsp.display-item.citation.isi??? ND
social impact