The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy--D-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree 3.

Synthesis and Preliminary Biological Evaluation of Carba Analogues from Neisseria meningitidis A Capsular Polysaccharide / Q. Gao, C. Zaccaria, M. Tontini, L. Poletti, P. Costantino, L. Lay. - In: ORGANIC & BIOMOLECULAR CHEMISTRY. - ISSN 1477-0520. - 10:33(2012), pp. 6673-6681.

Synthesis and Preliminary Biological Evaluation of Carba Analogues from Neisseria meningitidis A Capsular Polysaccharide

Q. Gao
Primo
;
C. Zaccaria
Secondo
;
L. Poletti;L. Lay
Ultimo
2012

Abstract

The Gram-negative encapsulated bacterium Neisseria meningitidis type A (MenA) is a major cause of meningitis in developing countries, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against MenA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, consisting of (1→6)-linked 2-acetamido-2-deoxy--D-mannopyranosyl phosphate repeating units. The replacement of the ring oxygen with a methylene group to get a carbocyclic analogue leads to the loss of the acetalic character of the phosphodiester and consequently to the enhancement of its chemical stability. Here we report the synthesis of oligomers (mono-, di- and trisaccharide) of carba-N-acetylmannosamine-1-O-phosphate as candidates for stabilized analogues of the corresponding fragments of MenA capsular polysaccharide. Each of the synthesized compounds contains a phosphodiester-linked aminopropyl spacer at its reducing end to allow for protein conjugation. The inhibition abilities of the synthetic molecules were investigated by a competitive ELISA assay, showing that only the carba-disaccharide is recognized by a polyclonal anti-MenA serum with an affinity similar to a native MenA oligosaccharide with average polymerization degree 3.
PROTEIN CONJUGATE VACCINES ; GROUP-A ; GOLD NANOPARTICLES ; ANTIGENS ; PREVENTION; PROTECTION ; SEROGROUPS
Settore CHIM/06 - Chimica Organica
2012
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/180150
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact