Auxin and fusicoccin (FC) stimulate the active uptake of 3-O-methyl glucose (3-O-MG) in those materials in which they have been shown to activate an electrogenic proton extrusion (Pisum sativum L. stems, Zea mays L. coleoptiles and roots). In maize roots the curve relating 3-O-MG influx to external concentrations indicated that the values of the apparent Km increase in the 3-O-MG concentration range between 2×10-5 mol l-1 and 2×10-2 mol l-1. FC did not alter the Km values and its stimulating effect was nearly constant at all 3-O-MG concentrations tested. Basal and FC-induced uptake of 3-O-MG appeared associated with a transient proton influx suggesting that also in maize roots a sugar-proton contransport occurs. Diethyl stilbestrol, which inhibits proton extrusion, inhibited also basal and FC-induced 3-O-MG uptake. The data support the view that the stimulation by FC of 3-O-MG uptake is closely related to that of proton extrusion. The stimulation by FC of 3-O-MG uptake cannot be replaced by increasing extracellular proton concentration, nor may be explained only by the FC-induced hyperpolarization of transmembrane potential difference. The hypothesis is proposed that the effect of FC on 3-O-MG uptake depends on an increase of cytoplasmic pH, following the activation of the proton extruding system.

3-O-methyl glucose uptake stimulation by auxin and by fusicoccin in plant materials and its relationships with proton extrusion / R. Colombo, M.I. De Michelis, P. Lado. - In: PLANTA. - ISSN 0032-0935. - 138:3(1978), pp. 249-256.

3-O-methyl glucose uptake stimulation by auxin and by fusicoccin in plant materials and its relationships with proton extrusion

M.I. De Michelis
Secondo
;
1978

Abstract

Auxin and fusicoccin (FC) stimulate the active uptake of 3-O-methyl glucose (3-O-MG) in those materials in which they have been shown to activate an electrogenic proton extrusion (Pisum sativum L. stems, Zea mays L. coleoptiles and roots). In maize roots the curve relating 3-O-MG influx to external concentrations indicated that the values of the apparent Km increase in the 3-O-MG concentration range between 2×10-5 mol l-1 and 2×10-2 mol l-1. FC did not alter the Km values and its stimulating effect was nearly constant at all 3-O-MG concentrations tested. Basal and FC-induced uptake of 3-O-MG appeared associated with a transient proton influx suggesting that also in maize roots a sugar-proton contransport occurs. Diethyl stilbestrol, which inhibits proton extrusion, inhibited also basal and FC-induced 3-O-MG uptake. The data support the view that the stimulation by FC of 3-O-MG uptake is closely related to that of proton extrusion. The stimulation by FC of 3-O-MG uptake cannot be replaced by increasing extracellular proton concentration, nor may be explained only by the FC-induced hyperpolarization of transmembrane potential difference. The hypothesis is proposed that the effect of FC on 3-O-MG uptake depends on an increase of cytoplasmic pH, following the activation of the proton extruding system.
Auxin ; Fusicoccin ; Glucose transport ; Proton flux ; Roots ; Zea
Settore BIO/04 - Fisiologia Vegetale
1978
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/177951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 69
social impact