In this paper we present a study of pattern formation in bidimensional systems with competing short-range attractive and long-range repulsive interactions. The interaction parameters are chosen in such a way as to allow us to analyse two different situations: the spontaneous pattern formation due to the presence of strong competing interactions on different length scales and the pattern formation as a response to an external modulating potential when the system is close to its Lifshitz point. We compare different Monte Carlo techniques showing that the parallel tempering technique represents a promising approach for the study of such systems and we present detailed results for the specific heat and the structural properties. We also present random phase approximation predictions concerning spontaneous pattern formation (or microphase separation), as well as linear response theory predictions concerning the induced pattern formation due to the presence of an external modulating field. In particular we observe that the response of our systems to external fields is much stronger than the response of a Lennard-Jones fluid.

A bidimensional fluid system with competing interactions: spontaneous and induced pattern formation / A. Imperio, L. Reatto. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 16:38(2004), pp. S3769-S3789.

A bidimensional fluid system with competing interactions: spontaneous and induced pattern formation

A. Imperio
Primo
;
L. Reatto
Ultimo
2004

Abstract

In this paper we present a study of pattern formation in bidimensional systems with competing short-range attractive and long-range repulsive interactions. The interaction parameters are chosen in such a way as to allow us to analyse two different situations: the spontaneous pattern formation due to the presence of strong competing interactions on different length scales and the pattern formation as a response to an external modulating potential when the system is close to its Lifshitz point. We compare different Monte Carlo techniques showing that the parallel tempering technique represents a promising approach for the study of such systems and we present detailed results for the specific heat and the structural properties. We also present random phase approximation predictions concerning spontaneous pattern formation (or microphase separation), as well as linear response theory predictions concerning the induced pattern formation due to the presence of an external modulating field. In particular we observe that the response of our systems to external fields is much stronger than the response of a Lennard-Jones fluid.
Monte Carlo methods; pattern formation; RPA calculations; specific heat
Settore FIS/03 - Fisica della Materia
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/16780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 111
social impact