γ-Aminobutyric acid type B receptors (GABA-B) are expressed in glial cells of the central and peripheral nervous systems, and recent evidence has shown their importance in modulating physiological parameters of Schwann cell (SC). SC play essential roles in peripheral nerve regeneration, but several drawbacks prevent their use for nerve repair. Adult stem cells from adipose tissue (ASC) or bone marrow (BM-MSC) can be differentiated into an SC-like phenotype and used as SC replacements. The aim of this study was to investigate GABA-B receptor functional expression in differentiated stem cells by assessing the similarity to SC. By means of RT-PCR and Western blot methodologies, BM-MSC and ASC were found to express both GABA-B1 and GABA-B2 receptor subunits. The expression levels of GABA-B1b and GABA-B2 receptors were influenced by SC-like differentiation, as shown by Western blot studies. GABA-B receptor stimulation with baclofen reduced the proliferation rate of SC and differentiated ASC (dASC) but not that of dBM-MSC. In conclusion, both of the subunits that assemble into a functional GABA-B receptor are present in differentiated stem cells. Furthermore, GABA-B receptors in dASC are functionally active, regulating a key process such as proliferation. The presence of functional GABA-B receptors on differentiated stem cells opens new opportunities for a possible pharmacological modulation of their physiology and phenotype.

Schwann-like adult stem cells derived from bone marrow and adipose tissue express γ-aminobutyric acid type B receptors / A. Faroni, C. Mantovani, S.G. Shawcross, M. Motta, G. Terenghi, V. Magnaghi. - In: JOURNAL OF NEUROSCIENCE RESEARCH. - ISSN 0360-4012. - 89:9(2011 Sep), pp. 1351-1362. [10.1002/jnr.22652]

Schwann-like adult stem cells derived from bone marrow and adipose tissue express γ-aminobutyric acid type B receptors

C. Mantovani;M. Motta;V. Magnaghi
Ultimo
2011

Abstract

γ-Aminobutyric acid type B receptors (GABA-B) are expressed in glial cells of the central and peripheral nervous systems, and recent evidence has shown their importance in modulating physiological parameters of Schwann cell (SC). SC play essential roles in peripheral nerve regeneration, but several drawbacks prevent their use for nerve repair. Adult stem cells from adipose tissue (ASC) or bone marrow (BM-MSC) can be differentiated into an SC-like phenotype and used as SC replacements. The aim of this study was to investigate GABA-B receptor functional expression in differentiated stem cells by assessing the similarity to SC. By means of RT-PCR and Western blot methodologies, BM-MSC and ASC were found to express both GABA-B1 and GABA-B2 receptor subunits. The expression levels of GABA-B1b and GABA-B2 receptors were influenced by SC-like differentiation, as shown by Western blot studies. GABA-B receptor stimulation with baclofen reduced the proliferation rate of SC and differentiated ASC (dASC) but not that of dBM-MSC. In conclusion, both of the subunits that assemble into a functional GABA-B receptor are present in differentiated stem cells. Furthermore, GABA-B receptors in dASC are functionally active, regulating a key process such as proliferation. The presence of functional GABA-B receptors on differentiated stem cells opens new opportunities for a possible pharmacological modulation of their physiology and phenotype.
Settore MED/13 - Endocrinologia
Settore BIO/09 - Fisiologia
set-2011
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/166145
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact