INCOMPOSITA (INCO) is a MADS-box transcription factor and member of the functionally diverse StMADS11 clade of the MADS-box family. The most conspicuous feature of inco mutant flowers are prophylls initiated prior to first whorl sepals at lateral positions of the flower primordium. The developing prophylls physically interfere with subsequent floral organ development that results in aberrant floral architecture. INCO, which is controlled by SQUAMOSA, prevents prophyll formation in the wild type, a role that is novel among MADS-box proteins, and we discuss evolutionary implications of this function. Overexpression of INCO or SVP, a structurally related Arabidopsis MADS-box gene involved in the negative control of Arabidopsis flowering time, conditions delayed flowering in transgenic plants, suggesting that SVP and INCO have functions in common. Enhanced flowering of squamosa mutants in the inco mutant background corroborates this potential role of INCO as a floral repressor in Antirrhinum. One further, hitherto hidden, role of INCO is the positive control of Antirrhinum floral meristem identity. This is revealed by genetic interactions between inco and mutants of FLORICAULA, a gene that controls the inflorescence to floral transition, together with SQUAMOSA. The complex regulatory and combinatorial relations between INCO, FLORICAULA and SQUAMOSA are summarised in a model that integrates observations from molecular studies as well as analyses of expression patterns and genetic interactions.

INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum / S. Masiero, M.-A. Li, I. Will, U. Hartmann, H. Saedler, P. Huijser, Z. Schwarz-Sommer, H. Sommer. - In: DEVELOPMENT. - ISSN 0950-1991. - 131:23(2004), pp. 5981-5990.

INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum

S. Masiero
Primo
;
2004

Abstract

INCOMPOSITA (INCO) is a MADS-box transcription factor and member of the functionally diverse StMADS11 clade of the MADS-box family. The most conspicuous feature of inco mutant flowers are prophylls initiated prior to first whorl sepals at lateral positions of the flower primordium. The developing prophylls physically interfere with subsequent floral organ development that results in aberrant floral architecture. INCO, which is controlled by SQUAMOSA, prevents prophyll formation in the wild type, a role that is novel among MADS-box proteins, and we discuss evolutionary implications of this function. Overexpression of INCO or SVP, a structurally related Arabidopsis MADS-box gene involved in the negative control of Arabidopsis flowering time, conditions delayed flowering in transgenic plants, suggesting that SVP and INCO have functions in common. Enhanced flowering of squamosa mutants in the inco mutant background corroborates this potential role of INCO as a floral repressor in Antirrhinum. One further, hitherto hidden, role of INCO is the positive control of Antirrhinum floral meristem identity. This is revealed by genetic interactions between inco and mutants of FLORICAULA, a gene that controls the inflorescence to floral transition, together with SQUAMOSA. The complex regulatory and combinatorial relations between INCO, FLORICAULA and SQUAMOSA are summarised in a model that integrates observations from molecular studies as well as analyses of expression patterns and genetic interactions.
MADS-box protein ; Prophyll ; Floral meristem identity ; Floral architecture ; Antirrhinum majus
Settore BIO/01 - Botanica Generale
Settore BIO/11 - Biologia Molecolare
2004
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/149830
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 101
  • ???jsp.display-item.citation.isi??? 94
social impact