Residual stereoisomerism is a form of stereoisomerism scarcely considered so far for applicative purposes, though extremely interesting, since the production of stereoisomers does not involve classical rigid stereogenic elements. In three-bladed propeller-shaped molecules, a preferred stereomerization mechanism, related to the correlated rotation of the rings, allows the free interconversion of stereoisomers inside separated sets (the residual stereoisomers) that can interconvert through higher energy pathways. In light of possible future applications as chiral ligands for transition metals in stereoselective processes, some C3-symmetric phosphorus-centered propellers, which could exist as residual enantiomers, are synthesized and the possibility of resolving their racemates into residual antipodes is explored. While the tris(aryl)methanes are configurationally stable at room temperature, only selected tris(aryl)phosphane oxides display a configurational stability high enough to allow resolution by HPLC on a chiral stationary phase (CSP HPLC) at a semipreparative level at room temperature. Stability was evaluated through different techniques (circular dichroism (CD) signal decay, dynamic CSP HPLC (CSP DHPLC), dynamic NMR analysis (DNMR)) and the results compared and discussed. Phosphanes were found much less stable than the corresponding phosphane oxides, for which preliminary calculations suggest that the three-ring-flip enantiomerization mechanism (M0) would be easier than phosphorus pyramidal inversion. The parameters affecting the configurational stability of the residual enantiomers of C3-symmetric propellers are discussed.

Chirality in the Absence of Rigid Stereogenic Elements: The Design of Configurationally Stable C3-Symmetric Propellers / T. Benincori, A. Marchesi, T. Pilati, A. Ponti, S. Rizzo, F. Sannicolò. - In: CHEMISTRY-A EUROPEAN JOURNAL. - ISSN 0947-6539. - 15:1(2009), pp. 94-105.

Chirality in the Absence of Rigid Stereogenic Elements: The Design of Configurationally Stable C3-Symmetric Propellers

F. Sannicolò
Ultimo
2009

Abstract

Residual stereoisomerism is a form of stereoisomerism scarcely considered so far for applicative purposes, though extremely interesting, since the production of stereoisomers does not involve classical rigid stereogenic elements. In three-bladed propeller-shaped molecules, a preferred stereomerization mechanism, related to the correlated rotation of the rings, allows the free interconversion of stereoisomers inside separated sets (the residual stereoisomers) that can interconvert through higher energy pathways. In light of possible future applications as chiral ligands for transition metals in stereoselective processes, some C3-symmetric phosphorus-centered propellers, which could exist as residual enantiomers, are synthesized and the possibility of resolving their racemates into residual antipodes is explored. While the tris(aryl)methanes are configurationally stable at room temperature, only selected tris(aryl)phosphane oxides display a configurational stability high enough to allow resolution by HPLC on a chiral stationary phase (CSP HPLC) at a semipreparative level at room temperature. Stability was evaluated through different techniques (circular dichroism (CD) signal decay, dynamic CSP HPLC (CSP DHPLC), dynamic NMR analysis (DNMR)) and the results compared and discussed. Phosphanes were found much less stable than the corresponding phosphane oxides, for which preliminary calculations suggest that the three-ring-flip enantiomerization mechanism (M0) would be easier than phosphorus pyramidal inversion. The parameters affecting the configurational stability of the residual enantiomers of C3-symmetric propellers are discussed.
Chirality; Circular dichroism; NMR spectroscopy; Phosphane oxides; Phosphanes; Residual enantiomers
Settore CHIM/06 - Chimica Organica
Settore CHIM/02 - Chimica Fisica
2009
Article (author)
File in questo prodotto:
File Dimensione Formato  
Chemistry 1.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.88 kB
Formato Adobe PDF
2.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/145160
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 18
social impact