We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70-200 microA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1-2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.

Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles / G. Cerri, H. Shimazu, M.A. Maier, R.N. Lemon. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - 90:2(2003), pp. 832-842.

Facilitation from ventral premotor cortex of primary motor cortex outputs to macaque hand muscles

G. Cerri
Primo
;
2003

Abstract

We demonstrate that in the macaque monkey there is robust, short-latency facilitation by ventral premotor cortex (area F5) of motor outputs from primary motor cortex (M1) to contralateral intrinsic hand muscles. Experiments were carried out on two adult macaques under light sedation (ketamine plus medetomidine HCl). Facilitation of hand muscle electromyograms (EMG) was tested using arrays of fine intracortical microwires implanted, respectively, in the wrist/digit motor representations of F5 and M1, which were identified by previous mapping with intracortical microstimulation. Single pulses (70-200 microA) delivered to F5 microwires never evoked any EMG responses, but small responses were occasionally seen with double pulses (interval: 3 ms) at high intensity. However, both single- and double-pulse stimulation of F5 could facilitate the EMG responses evoked from M1 by single shocks. The facilitation was large (up to 4-fold with single and 12-fold with double F5 shocks) and occurred with an early onset, with significant effects at intervals of only 1-2 ms between conditioning F5 and test M1 stimuli. A number of possible pathways could be responsible for these effects, although it is argued that the most likely mechanism would be the facilitation, by cortico-cortical inputs from F5, of corticospinal I wave activity evoked from M1. This facilitatory action could be of considerable importance for the coupling of grasp-related neurons in F5 and M1 during visuomotor tasks.
motor cortex ; premotor cortex ; grasping ; motor control
Settore BIO/09 - Fisiologia
2003
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/144889
Citazioni
  • ???jsp.display-item.citation.pmc??? 55
  • Scopus 123
  • ???jsp.display-item.citation.isi??? 116
social impact