Context. In a previous paper, we found that globular clusters in our Galaxy lie close to a line in the (log Re, SBe, log σ) parameter space, with a moderate degree of scatter and remarkable axi-symmetry. This implies that a purely photometric scaling law exists, that can be obtained by projecting this line onto the (log Re, SBe) plane. These photometric quantities are readily available for large samples of clusters, as opposed to stellar velocity dispersion data. Aims. We study a sample of 129 Galactic and extragalactic clusters on this photometric plane in the V-band. We search for a linear relation between SBe and log Re and study how the scatter around the best-fit relation is influenced by both age and dynamical environment. We interpret our results in terms of testing the evolutionary versus primordial origin of the fundamental line. Methods. We perform a detailed analysis of surface brightness profiles, which allows us to present a catalogue of structural properties without relying on a given dynamical model. Results. We find a linear relation between SBe and log Re, in the form SBe = (5.25 ± 0.44) log Re + (15.58 ± 0.28), where SBe is measured in mag/arcsec2 and Re in parsec. Both young and old clusters follow the scaling law, which has a scatter of approximately 1 mag in SBe. However, young clusters display more of a scatter and a clear trend in this with age, which old clusters do not. This trend becomes tighter if cluster age is measured in units of the cluster half-light relaxation time. Two-body relaxation therefore plays a major role, together with passive stellar population evolution, in shaping the relation between SBe, log Re, and cluster age. We argue that the log Re-SBe relation and hence the fundamental line scaling law does not have a primordial origin at cluster formation, but is rather the result of a combination of stellar evolution and collisional dynamical evolution.

On the fundamental line of galactic and extragalactic globular clusters / M. Pasquato, G. Bertin. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 512:5(2010), pp. A35.1-A35.14. [10.1051/0004-6361/200912947]

On the fundamental line of galactic and extragalactic globular clusters

G. Bertin
Ultimo
2010

Abstract

Context. In a previous paper, we found that globular clusters in our Galaxy lie close to a line in the (log Re, SBe, log σ) parameter space, with a moderate degree of scatter and remarkable axi-symmetry. This implies that a purely photometric scaling law exists, that can be obtained by projecting this line onto the (log Re, SBe) plane. These photometric quantities are readily available for large samples of clusters, as opposed to stellar velocity dispersion data. Aims. We study a sample of 129 Galactic and extragalactic clusters on this photometric plane in the V-band. We search for a linear relation between SBe and log Re and study how the scatter around the best-fit relation is influenced by both age and dynamical environment. We interpret our results in terms of testing the evolutionary versus primordial origin of the fundamental line. Methods. We perform a detailed analysis of surface brightness profiles, which allows us to present a catalogue of structural properties without relying on a given dynamical model. Results. We find a linear relation between SBe and log Re, in the form SBe = (5.25 ± 0.44) log Re + (15.58 ± 0.28), where SBe is measured in mag/arcsec2 and Re in parsec. Both young and old clusters follow the scaling law, which has a scatter of approximately 1 mag in SBe. However, young clusters display more of a scatter and a clear trend in this with age, which old clusters do not. This trend becomes tighter if cluster age is measured in units of the cluster half-light relaxation time. Two-body relaxation therefore plays a major role, together with passive stellar population evolution, in shaping the relation between SBe, log Re, and cluster age. We argue that the log Re-SBe relation and hence the fundamental line scaling law does not have a primordial origin at cluster formation, but is rather the result of a combination of stellar evolution and collisional dynamical evolution.
Galaxy: structure; Globular clusters: general
Settore FIS/05 - Astronomia e Astrofisica
2010
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/142265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact