The main problems found in designing drugs are those of optimizing the drug–target interaction and of avoiding the insurgence of resistance. We suggest a scheme for the design of inhibitors that can be used as leads for the development of a drug and that do not face either of these problems, and then apply it to the case of HIV-1-PR. It is based on the knowledge that the folding of single-domain proteins, such as each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting, and highly conserved amino acids that play a central role in the folding process. Because LES have evolved over many generations to recognize and strongly interact with each other so as to make the protein fold fast and avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding-inhibitor molecules suggest themselves: short peptides (or eventually their mimetic molecules) displaying the same amino acid sequence of that of LES (p-LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance; in fact, mutations in HIV-1-PR that successfully avoid the action of p-LES imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations, we first identify the LES of the HIV-1-PR and then show that the corresponding p-LES peptides act as effective inhibitors of the folding of the protease.

Design of HIV-1-PR inhibitors which do not create resistance: blocking the folding of single monomers / R. A. Broglia, G. Tiana, L. Sutto, D. Provasi, F. Simona. - In: PROTEIN SCIENCE. - ISSN 0961-8368. - 14:10(2005), pp. 2668-2681.

Design of HIV-1-PR inhibitors which do not create resistance: blocking the folding of single monomers

R. A. Broglia
Primo
;
G. Tiana
Secondo
;
L. Sutto;D. Provasi
Penultimo
;
F. Simona
Ultimo
2005

Abstract

The main problems found in designing drugs are those of optimizing the drug–target interaction and of avoiding the insurgence of resistance. We suggest a scheme for the design of inhibitors that can be used as leads for the development of a drug and that do not face either of these problems, and then apply it to the case of HIV-1-PR. It is based on the knowledge that the folding of single-domain proteins, such as each of the monomers forming the HIV-1-PR homodimer, is controlled by local elementary structures (LES), stabilized by local contacts among hydrophobic, strongly interacting, and highly conserved amino acids that play a central role in the folding process. Because LES have evolved over many generations to recognize and strongly interact with each other so as to make the protein fold fast and avoid aggregation with other proteins, highly specific (and thus little toxic) as well as effective folding-inhibitor molecules suggest themselves: short peptides (or eventually their mimetic molecules) displaying the same amino acid sequence of that of LES (p-LES). Aside from being specific and efficient, these inhibitors are expected not to induce resistance; in fact, mutations in HIV-1-PR that successfully avoid the action of p-LES imply the destabilization of one or more LES and thus should lead to protein denaturation. Making use of Monte Carlo simulations, we first identify the LES of the HIV-1-PR and then show that the corresponding p-LES peptides act as effective inhibitors of the folding of the protease.
Folding inhibition; HIV protease; Monte Carlo simulations; Simplified model
Settore FIS/04 - Fisica Nucleare e Subnucleare
Settore FIS/03 - Fisica della Materia
2005
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/12237
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact