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Abstract of the dissertation

Hardware-Assisted Virtualization and its Applications to
Systems Security

by
Aristide Fattori

Università degli Studi di Milano

In recent years, the number and sophistication of cybercriminals attacks has
risen at an alarming pace, and this is not likely to slow down in the near future.
To date, security researchers and industry proposed several countermeasures to
this phenomenon, and continue to investigate new techniques, in a real arms race
against miscreants.

Most modern techniques to detect or prevent threats are based on dynamic
analysis, that allows to observe the properties and behaviors of software while it
runs. Many dynamic approaches are based on virtualization technology. Over
the years, indeed, virtualization became the de facto standard environment for
the implementation of many dynamic security tools and frameworks. Virtualiza-
tion has many features that are particularly useful when dealing with systems
security. Operating as a hypervisor (i.e., the entity that controls the execution of
a system inside a virtual machine), indeed, grants a good degree of transparency
and isolation, since the hypervisor is always more privileged than any component
running as a guest of a virtual machine. On the contrary, approaches that di-
rectly work in the same system of their targets are prone to identification and
corruption of their results.

Until some years ago, virtualization was uniquely performed via software. Due
to the many challenges and intricacies of virtualization, most software hypervisors
have lots of prerequisites (e.g., the source code, or binaries, of a system must be
modified before it can be run as a guest of a virtual machine). Furthermore, they
commonly have bugs, due to the enormous amount of little details that must
be handled, and these badly affect transparency and isolation qualities. These
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pitfalls greatly hinder security systems built on top of software hypervisors. The
introduction of an hardware support for virtualization on most commodity CPUs,
however, provided a good mean to overcome these limitations. In a strive to
contribute to the systems security research field, in this dissertation we show
how such hardware support can be leveraged to build tools and frameworks that
use dynamic analysis to face some of the many challenges of the field. In more
details, we first describe the design and implementation of a generic framework
to perform complex dynamic analyses of both user- and kernel-level software,
without relying on any native support or any a priori modification of the target.
This framework lays the foundation of this dissertation, and on top of it we built
the other two contributions: a malware detector and a tool to automatically
discover vulnerabilities in Mac OS X kernel modules.
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1
Introduction

S
ystems security is of uttermost importance for our whole society. The more
computer systems become pervasive in our daily lives, the more appealing
they appear to criminals and terrorists. Unfortunately, the situation is not

good: everyday we read reports of malware infecting millions of users, attacks
against banks and infrastructures, intrusions into government facilities and so
on [95, 37, 88, 113]. This phenomenon is mainly caused by the fact that actions
once mainly driven by passion and by a thirst that could only be quenched by
knowledge, are now motivated by an extremely different lust: money. A whole
underground economy was born and raised on the ground of cybercrimes, and
its ever-growing revenues keep pushing more and more criminals into becoming
cybercriminals, with the promise of easy gains. Users identities, e-mail accounts,
credit card numbers, shells on compromised machines, weaponized exploits: al-
most everything can be sold on the black market of cybercriminals [123, 53].

As if this was not enough, to face the countermeasures of security researchers
and industry, miscreants are getting more and more organized. Indeed, they
created complex systems to monetize the whole distribution chain of malware,
automating every step to maximize the number and persistence of infections.
Providers of such service then sells malware installations to their customers on
the black market, in a process named pay-per-install by security researchers [17].
Similar services exists for exploits, rather than malware, and typically sell, or
rent out, exploit toolkits [48].

According to data collected by anti-virus companies and security researchers,
the cybercrime phenomenon is not going to stop its growth anytime soon. Fig-
ure 1.1 reports just one of its aspects (malware), that can however give an idea
of the rate of the phenomenon growth: McAfee received almost as many mal-
ware in the second quarter of 2013 alone as in the whole 2011 [83]. Furthermore,
Symantec reports that more than 5,200 new vulnerabilities were discovered and
publicly disclosed in 2012 [127]—and these are probably just the tip of the iceberg,
considering those that were discovered but not disclosed.
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Figure 1.1: New malware samples, McAfee1

To fight cybercriminals and, more generally, to improve the security of pro-
grams and operating systems, much effort has been put in the creation of ap-
proaches and techniques focused on both defense, e.g., detection of malware and
intrusions, and prevention, e.g., automatic identification of vulnerabilities. Such
techniques are commonly based on program analysis, and are usually divided
among static and dynamic, two branches that have completely separated origins,
but whose boundaries are lately becoming more and more blurred, as researchers
propose hybrid approaches that mix the best of both. In a glimpse—much more
details will be given later in this thesis—static analysis extracts information on
properties of the target and on its possible behaviors, without running it, while
dynamic approaches execute the target, and observe its properties and behaviors
at run-time.

Static approaches initially appeared more appealing than dynamic ones, be-
cause they theoretically allow to reason on all the properties of the analysis target,
while the latter are usually less generic, as they can observe only what is exhib-
ited at run-time. Unfortunately, this does not always hold. For example, some
programs dynamically generate code and jump into it with indirect control trans-
fers (e.g., jmp *%eax) that are extremely hard—or impossible, in some cases—to
analyze statically. Furthermore, cybercriminals more and more commonly ex-
ploit a plethora of advanced self-defense techniques to thwart static techniques;
obfuscation [72], packing [77], polymorphism [91], and metamorphism [129] are
used to hinder the analysis of both malware and exploits.

In the wake of the introduction of these self-defense techniques, dynamic anal-
ysis began to be more and more used. The reason behind this is simple: indepen-

1McAfee report [83] does not clarify what is considered new malware. We assume that all
variants of the same sample (i.e., with a different checksum) are considered as such.

2
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dently from how complex or obfuscated a piece of software is, when executed it
will actually do something that can be observed dynamically. Thus, by running
and monitoring the target, dynamic approaches are able to understand what is
hidden to the eyes of static ones. Unfortunately, dynamic is not a synonym of
bulletproof, and special care must be taken when designing a dynamic analysis
approach. Drawing a parallel between medical and security worlds, the analysis
environment must be sterile, i.e., its presence must not affect nor corrupt the be-
havior of the target, and completely isolated, otherwise the target may, purposely
or not, modify the analysis engine itself, automatically invalidating its result.
These prerequisites may seem trivial to obtain, for example leveraging standard
privilege separation facilities commonly offered by most operating systems, but
satisfying them is everything but simple. Such requirements have been recently
identified and formalized, among many others, by Rossow et al. [107].

Over the years, virtualization [45] became the de facto standard to fulfill the
requirements of dynamic analysis. The ability to run a single program, or even
a whole system, as a guest of a confined virtual container, and inspect its state
from the hypervisor, i.e., the entity that controls the execution of the container,
proved to be indeed appealing for the construction of many analysis frameworks
and tools. Operating as a hypervisor, indeed, grants more than one benefit for
an analysis engine that, theoretically, has full control over the target, can inspect
its state, and can hide its presence quite easily.

Until some years ago, however, virtualization environments where still imple-
mented uniquely via software, and analysis engines built on top of them were
flawed by the limits of software virtualization. Despite they are theoretically per-
fect environments for dynamic analysis, indeed, software level hypervisors have
more than one drawback. For example, standard software techniques require to
modify the system that must be run as a guest of a virtual machine, either at
the source code level, in paravirtualization, or at binary level, with binary trans-
lation [137]. Such solutions cannot be applied in every possible situation (e.g.,
the source code of the guest may be unavailable) and, at any rate, need to be
carefully tailored around the systems (e.g., the same binary translations applied
to Windows cannot be seamlessly applied to Linux). Furthermore, due to the
many intricacies of their implementations, software hypervisors often have sub-
tle bugs that can be leveraged, by software running inside the guest, to identify
the presence of a virtualization environment [102]. These pitfalls clearly hinder
dynamic analysis engines built on top of software hypervisors, limiting their ap-
plications to systems that can be easily run as guests of software virtualization
environments, or that are not influenced by its presence, either purposely (i.e.,
through a red pill) or not.

The introduction of hardware support for virtualization on most commodity
CPUs, however, breathed new life into virtualization-based approaches [92, 4, 46].
Without lingering on technical details, hardware-assisted virtualization allows to
write flexible and transparent hypervisors, without requiring modifications of
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virtualized systems. Such features can be extremely useful in creating tools and
frameworks to tackle many problems of systems security. Indeed, the ability
to run an OS as a guest of a virtual machine, without modifying it, greatly
increase the applicability of virtualization. Last but not least, transparency is
much easier to obtain with hardware support. As we briefly mentioned, there
are hundreds of red-pills for software virtualization environment [81], while, to
date, the only detection technique for a well-configured and correctly implemented
hardware-assisted hypervisors are timing attacks [40]. However, the applications
of such attacks on real-world hypervisors on unknown hardware are still open to
discussion.

1.1 Dissertation contributions

This dissertation contains details of the design and implementation of three so-
lutions that address as many problems among those most relevant for systems
security. All three solutions are strictly connected: the first prepares the ground
for the other two that, as we will see, are built on top of it.

We first present the internal details of a generic framework to perform complex
dynamic analyses of both user- and kernel-level software, without relying on any
native support or any a priori modification of the target [39]. This framework is
at the basis of this dissertation, as every solution that we hereby present is built
on top of it. Our framework is indeed a very convenient basis for many dynamic
analysis approaches, as it allows to overcome many issues of such techniques, of-
fering a completely isolated and transparent environment and allowing to analyze
any running target, thanks to its ability to be hot plugged in a system as it runs.
Furthermore, it offers an API that can be leveraged to build custom analysis
tools that will be executed on top of the framework. In this dissertation we also
present some contributions that were not originally included in the paper, such
as the support for extended page tables (EPT), the implementation of efficient
and transparent EPT based breakpoints and watchpoints, as well as the addition
of OS-dependent virtual machine introspection techniques for Windows 7 and
Linux. Parts of the framework have also been presented in Paleari’s thesis [101].
In this dissertation, we report only those parts of the framework to which we
contributed directly, or that have been introduced as a novel contribution of the
thesis (e.g., EPT support and all components that followed the introduction of
such support).

The second contribution is a malware detector, built as an evolution of Ac-
cessMiner [67]. AccessMiner defines and uses access activity models that, with a
reasonable amount of training, can be used as a basis to perform malware detec-
tion with a very high detection rate and no false positives. In more details, the
contribution of this dissertation is the description of a new version of AccessMiner,
and how it can be implemented on top of our hypervisor-based framework.
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The third, and last, contribution is the design and implementation of Lynx-
Fuzzer, a tool to automatically find vulnerabilities in Mac OS X kernel level
components. LynxFuzzer, uses three different fuzzing engines to stress test kernel
extensions (i.e., the dynamically loadable kernel components of OS X). Lynx-
Fuzzer leverages hardware-assisted virtualization to inspect tested kernel exten-
sions, without inducing any change in them, a strong prerequisite of fuzzing: any
inadvertent modification of the target, indeed, may easily lead to wrong results.
LynxFuzzer has been implemented and tested on Mac OS X 10.8.2 (Mountain
Lion), and provided unexpected results, individuating bugs in 6 of the 17 kexts
we analyzed. Furthermore, both to support one of the fuzzing engine, and to give
a partial evaluation of our fuzzer effectiveness, we implemented a code coverage
analysis techniques that gave interesting results, in terms of obtained precision
and overhead.

Recapping, we present solutions to three different systems security problems:
transparent dynamic analysis, malware detection, and kernel fuzzing. Our dy-
namic analysis framework has been presented at the conference on Automated
Software Engineering [39], and is complemented in this thesis with new parts
that were not included in the original paper. The new version of AccessMiner has
been presented during the iCode Final Conference and is now submitted to the
Journal of Computer Security [38]. Finally, a paper on LynxFuzzer main contri-
butions is still under submission, but the results of the code coverage technique
we implemented have already been submitted as a short paper to the Journal of
Software Testing, Verification, and Reliability.

1.2 Dissertation organization

The dissertation is organized as follows. Chapter 2 introduces some preliminary
concepts on virtualization and program analysis. Chapter 3 presents the design
and implementation of our generic, transparent, and completely dynamic, hyper-
visor analysis framework. Chapter 4 presents our new version of AccessMiner,
and the results and performance overhead of using its access activity models to
perform malware detection. Chapter 5 presents LynxFuzzer, a fuzzing tool that
leverages hardware-assisted virtualization to automatically discover vulnerabili-
ties in Mac OS X kernel modules. Chapter 6 compares our research work with
related literature. Finally, chapter 7 concludes the dissertation and sketches some
possible future research directions.
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2
Preliminary concepts

T
his chapter contains some preliminary concepts that are at the very basis
of this thesis. First, we give a glimpse at the many challenges of virtu-
alization and, then, at how hardware-assisted virtualization can ease the

cumbersome task of virtualizing an operating system. Then, we introduce con-
cepts of program analysis, outlining both static and dynamic techniques, paying
specific attention on their applications to systems security.

2.1 Virtualization

An hypervisor is a software entity that controls and regulates the execution of
one or more virtual machines. For our purposes, we can classify hypervisors in
two macro-categories: pure software and hardware-assisted.

The first category has been the de facto standard until the introduction of
hardware virtualization technology and basically works by modifying the virtu-
alized system to intercept and emulate a set of dangerous instructions. Such set
includes every instruction that could allow the virtualized system to detect, or
escape, its virtual container. Non dangerous instructions are executed natively,
to boost up performances (as opposed to emulation [13], where every instruction
is emulated).

Software virtualization is extremely complex to implement, and requires to
face many challenging problems. For example, one is that the virtualized kernel
cannot run at the privilege level it was originally designed for (typically, ring 0),
because the hypervisor runs at the same level and this means that the virtualized
system could escape its container. Thus, hypervisors use the ring deprivileging
technique that runs the virtualized kernel in a less privileged level (ring 1, or
ring 3, rather than the typical ring 0). Doing so, however, poses more problems,
referred to as ring aliasing and ring compression [92]. The first includes all those
instructions that behave differently, according to the privilege level in which they
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are executed, and that could let the virtualized kernel discover it is not being run
at ring 0. The second derives from the fact that the memory management unit
on an Intel architecture only distinguishes between two privilege levels (0 and
3), since paging structures have only 1 bit to control who can access a memory
page [55]. This means that, when a software hypervisor uses ring deprivileging
to reserve ring 0 for itself, and runs the virtualized kernel in ring 3, it deprives
the latter of its main protection from user-space programs. Furthermore, ring
deprivileging is not sufficient, as there are many other problems, related to both
transparency and performances [92]. For example, some dangerous instructions
are not privileged and cannot be intercepted with deprivileging (i.e., sidt), thus
compelling the hypervisor to find other ways to intercept them.

Common pure-software virtualization techniques that deal with such prob-
lems are paravirtualization [11, 140] and binary translation [136, 137]. The first
directly modifies the source code of the target kernel, for example to replace
non-virtualizable instructions with others that explicitly transfer the execution
to the hypervisor. The second requires to modify the target as well, but does
so on kernel binaries, translating non-virtualizable instructions into sequences
of virtual-machine-safe instructions with the same effect on the virtualized sys-
tem [137]. For example, a sidt instruction could be translated into a sequence
of instructions that fetches the base address of the interrupt descriptor table of
the virtual machine, rather than the one currently stored in the IDTR, used by
the hypervisor.

The second category includes hypervisors that leverage hardware support for
virtualization, lately introduced in many commodity CPUs to greatly ease the
task of virtualization, allowing hypervisors to spare themselves many of the in-
tricacies of pure software approaches, as we will see in the following of section.

A further classification, orthogonal to the previous one, divides hypervisors
between type 1, i.e., hypervisors that are directly installed on the bare metal, and
type 2, i.e., hypervisors that are executed as part of an operating system already
running on the hardware (e.g., a kernel module along with an user-space GUI).

2.2 Intel VT-x

All the approaches presented in this thesis strongly rely on hardware-assisted
virtualization for their implementation, so in this section we give an overview of
how such support helps creating transparent and extremely flexible hypervisors.
Hardware virtualization technology available in Intel CPUs is called VT-x [92].
AMD technology, named SVM [4], is very similar and mostly differs in terminol-
ogy. ARM recently introduced hardware support for virtualization as well [46].
In this thesis, however, we focus solely on Intel’s technology.

Intel VT-x [56, 92] defines two new modes of operation for the CPU: VMX
root mode and VMX non-root mode. The former is reserved to the hypervisor
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(also often referred to as Virtual Machine Monitor, or VMM1), while the guest
(i.e., the system running inside a virtual machine) is confined in the latter. Soft-
ware executing in both modes can operate in any of the four privilege levels
that are supported by the CPU, eliminating the need for ring deprivileging tech-
niques. Thus, the guest OS can execute at the highest CPU privilege level and
the hypervisor can still supervise its execution without any modification.

In the typical deployment, the launch of a hypervisor consists of three steps.
First, VMX root-mode is enabled. Second, the CPU is configured to execute
the hypervisor in root-mode. Third, the guests are booted in non-root mode.
However, Intel VT-x supports a particular feature, called late launching of VMX
modes, that allows to launch a hypervisor at any time, thus giving the ability to
turn a running OS into a guest (i.e., a system running inside a virtual machine).
The procedure for such a delayed launch is the same as the one just described,
with the exception of the third step. The state of the CPU for non-root mode
is set to the exact same state of the CPU preceding the launch, such that, when
the launch is completed, the execution of the OS and its applications resumes
in non-root mode. The inverse procedure can be used to unload the hypervisor,
disable VMX root-mode, and give back full control of the system to the OS.

Once the hypervisor is installed, the execution switches back and forth be-
tween non-root and root mode. In VT-x, such transitions are defined as vm exit,
from the guest to the hypervisor, and vm entry, in the opposite direction. The
hypervisor is executed only when particular events in the guest trigger an exit
transition, and this is the only way a hypervisor can gain the control back, once it
performs an entry. The set of exit-triggering events is extremely fine grained and
can be configured by the hypervisor (e.g., it is possible to cause an exit when-
ever a particular non-maskable interrupt is triggered by the guest). Main exiting
events include exceptions, interrupts, I/O operations, and the execution of privi-
leged instructions (e.g., accesses to control registers). Every exit is handled by a
dispatch function in the hypervisor that eventually performs an entry to give the
control back to the guest.

Exits can also be explicitly requested by in-guest software, via vmcall instruc-
tions. Because of its similarity to system calls, this approach is commonly dubbed
as hypercall. Indeed, an user-space program can fill appropriate CPU registers
with the data it needs to send to the hypervisor and then execute a vmcall.
Similarly to a sysenter instruction that causes a transition from user- to kernel-
mode, this instruction causes a switch from non-root to root mode, transferring
the execution control to the hypervisor. Once the request from non-root mode
has been handled, the execution is returned to the user-space program, by the
hypervisor, to the instruction after the vmcall.

The state of the CPU at the time of an exit and of an enter is stored in a data
structure called Virtual Machine Control Structure, or VMCS. More precisely,

1In this dissertation we will use the terms hypervisor and virtual machine monitor (and its
short form) to refer to software running in root mode, unless specified differently.
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the VMCS stores the host state, guest state, execution control fields, entry/exit
control fields, and exit information fields. Each of these fields has its own purpose:

• Host state stores the state of the processor that is loaded on exits to root
mode, and consists of the state of all the registers of the CPU (except for
general purpose registers).

• Guest state similarly stores the state of the processor that is loaded on
entries to non-root mode. The guest state is updated automatically at
every exit, such that the subsequent entry to non-root mode will resume
the execution from the exact same status, unless the hypervisor alters it.
Indeed, the hypervisor can change values of guest state fields to modify the
state of a running guest at its will.

• Execution control fields define the behavior of the CPU in non-root
mode and allow a fine-grained specification of which events should trigger
an exit to root mode.

• Entry and exit control fields respectively govern particular configura-
tions associated to entries and exits.

• Exit information fields are filled by the hardware whenever an exit occurs
and contain a numeric code indicating the reason of the exit and many an-
cillary information. For example, in case of an exit triggered by an access
to a control register (e.g., mov eax, cr3), such fields would include pre-
cious information, such as: the accessed register, the access type (read or
write), the operand type (memory or register), the general purpose register
(source or destination) and so on. It easy to see that such information are
extremely valuable, because without the hardware support for virtualiza-
tion, the hypervisor would have to revert to virtual machine introspection
techniques [43], which are often onerous and error-prone.

As a last note on the VMCS, consider that its fields can be read and, in some
cases, written by the hypervisor by means of vmread and vmwrite instructions,
that can only be executed in root mode.

The last concept we need to introduce is that of extended page tables (EPT).
Such technology has been introduced to support memory virtualization, the main
source of overhead when virtualizing a system. It basically consists in a paging
structure for a full 64 bit address space (i.e., a 4 level paging structure) [56] that
keeps a mapping between guest and host physical addresses. When such mecha-
nism is enabled, the standard virtual-to-physical address translation of guests is
modified as in Figure 2.1.

When software in the guest references a virtual address, this is translated
into a physical address by the memory management unit (MMU), as normally
happens on non-virtualized systems. Such an address however, is not a real
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Guest Page Tables Extended Page Tables

cr3 EPT Base Pointer

va gpa hpa

Figure 2.1: Address translation with EPT

Physical memory

RWX

RWX

R-X

RWX

PT EPT

Figure 2.2: Physical page protection through EPT structures

physical address, but rather a guest physical address (gpa). The hardware then,
similarly to the MMU, walks EPT paging structures to translate a gpa into a
host physical address (hpa), that corresponds to the actual physical address in
the RAM. EPT technology also defines two new exits: EPT Misconfiguration
and EPT Violation, respectively caused by wrong settings in EPT paging entries
and by the guest attempting to access memory areas it is not allowed to. By
altering EPT entries, indeed, the hypervisor has full control on how the guest
accesses physical memory. An example of this can be observed in Figure 2.2,
where denotes pages protected through EPT. In this case, any write-access
by the guest to that page triggers a violation. Exits information fields of the
violation are filled with extremely useful information, such as the accessed gpa,
its corresponding linear address, and the type of attempted access (R, W or X).

The same protection approach can be implemented purely via software, with
shadow page tables. The idea is the same, with the difference that the hypervisor
must directly modify entries of the page table. This, however, entails a lot of
problems, mainly due to the fact that the guest can access the page table as well,
thus the hypervisor must protect both the page and the page table, to prevent
the guest from detecting or disabling the protection. Another problem is that,
while EPT allows to work directly on physical memory pages, altering a page
table entry corresponds to altering the physical-to-virtual mapping of a single
process. Altering an entry, thus, protects the virtual mapping of the page, rather
than the page itself and nothing prevents the guest from creating a new mapping
to the protected page, bypassing the protection. Thus, more complications arise,
because the solution to this problem requires that every write access to any
PT of the guest system must be mediated to prevent re-mapping of protected
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pages. Shadow page tables were the standard protection scheme of both software
and hardware hypervisors, before the introduction of EPT technonlogy. The
use of EPT allows a hypervisor to drastically reduce its overhead, as memory
virtualization is one of the main source of overhead in software hypervisors [30].

2.3 Program analysis

Program analysis usually refers to techniques that automatically extract prop-
erties of a computer program. Such techniques are mainly used in the field of
compilers, to produce extremely optimized and efficient code [3]. However, they
are important in other research fields as well, among which we find systems se-
curity. Consider the following example: it is well-known that it is impossible to
formally proof that a program is free of bugs, as this problem is equivalent to the
halting problem [134]. Program analysis, however, can greatly help developers to
find bugs in their applications and make them better and safer.

Program analysis can be conducted either statically or dynamically and both
solutions have their perks and disadvantages. During years, however, this division
began to fade, as researchers started to leverage strong points of both, giving birth
to many hybrid techniques.

2.3.1 Static analysis

Static analysis examines the code of a program (either source or binary) to ex-
trapolate information on its properties and on every possible behavior that can
be exhibited. Static analysis is complete, as the properties it observes do not
anyhow depend on the input that the program receives, or on the configuration
of the analysis environment. Techniques following this approach are commonly
adopted by compilers that analyze the source code of the software to apply many
compile-time optimizations [31].

Static analysis techniques are also employed in security, especially in malware
analysis and detection. When dealing with malware, indeed, being able to ex-
tract information without actually running a potentially dangerous program is
extremely useful. Particular instruction or byte sequences, characteristic patterns
in a program Control Flow Graph [3, 16], and opcode n-grams [50] are just ex-
amples of how information extracted through static analysis have been used for
malware detection and analysis.

Such techniques, however, suffer some limitations due to their static nature.
Indirect control transfer instructions (e.g., jmp *eax) cannot be followed stati-
cally, unless the value of eax is easily deducible. This may result in missing the
analysis of some portions of code (for example, code that can be reached only
through an indirect CTI may be ignored by a disassembler). Furthermore, mal-
ware authors introduced a plethora of techniques to thwart static analyses, such as
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obfuscation, packing, polymorphism, and metamorphism [72, 115, 77, 91, 129, 66].

2.3.2 Dynamic analysis

Dynamic analysis is completely different from its static counterpart: indeed, it
executes the target and observes its behavior and properties at runtime. In such
scenario, some observations become extremely simpler. For example, getting the
value of a particular variable at a given point during execution just requires to
execute the program up to that point and observe its value. Unfortunately, this
automatically implies that each observation conducted through dynamic analysis
is strictly related to the execution that led to it. This means that each observed
value and behavior depends on the program’s input and on the analysis envi-
ronment. Practically speaking, this may results in missing some properties that
would have been observed through static analysis. The classical, security-related,
example in which this limitation could badly affect the results of dynamic analysis
are logic bombs (i.e., malware that executes its payload only if certain conditions
are met, typically a date and time). If a malware detector runs a logic bomb, and
its triggering conditions are not met, payload is not executed and the detector
may incorrectly classify the malware as benign.

Independently from their implementation and granularity level (e.g., instruc-
tions, system calls, library functions), dynamic analysis has long been used for
malware analysis [35], since techniques to hinder static analysis commonly em-
ployed by malware do not affect it. Such approaches, however, are not bulletproof
either. The main countermeasure adopted by malware is to try to detect the pres-
ence of an analyzer and, if needed, hide any malicious behavior [102, 110, 22].
This led to many efforts to create new environments that could grant more trans-
parency, and soon resulted in a “race to the lower level” between malware and
analysis tools [109, 33].

Despite these problems, the possibility to observe how a program behaves at
run time has been used to tackle many security problems, not limited to malware
analysis [35]. Examples of problems that have been tackled through dynamic anal-
ysis are: intrusion detection [43], exploit detection and prevention [15, 94], auto-
matic exploit generation [51, 8], automatic identification of vulnerabilities [19, 68].

2.3.3 Symbolic and concolic execution

Symbolic execution is a testing approach that, rather than feeding concrete inputs
to a program, uses symbolic inputs [60, 18]. Each time the target program uses an
input, this gets replaced with a symbolic value, and every operation that works
on input is modified to work on symbolic inputs. When a branch whose condition
depends on the input is met, the condition is stored and the symbolic execution
engine follows both true and false paths. The execution terminates when the a
particular point (or the end) of the target is reached. Using a constraint solver [89]
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on the set of conditions encountered during execution, the analyzer can generate
a set of concrete input values that lead the execution of the program to the
point where the analysis stopped. It is clear that this approach is extremely
helpful for many kind of analyses, since it basically solve the main problem of
dynamic analysis (i.e., observations are strongly bounded to what is executed).
Consider once again the logic bomb example: symbolic execution would allow to
automatically extract the triggering conditions of the malware. Unfortunately,
symbolic execution analysis techniques suffer from the path explosion problem.
In complex programs, where the number of possible execution paths is enormous,
a symbolic analysis engine would require too much time to follow all of them and
generate corresponding concrete input values.

An evolution of symbolic execution that aims at maximizing the code coverage
of an analyzed program is concolic execution [114, 76]. With this approach, the
target is, at first, executed on concrete inputs. Concurrently, the symbolic engine
follows the same execution path but threats variables as symbolic and keeps track
of branch conditions. When the execution is over, the constraint solver generates
a new set of concrete inputs, starting from the previous one, that will lead the
execution down a different path. Concolic execution does not solve the path
explosion problem on its now, but rather helps getting the execution down long
and intricated paths faster.

Many efforts have been put into trying to solve the path explosion prob-
lem, e.g., symbolically executing only portions of the target [24], or reducing the
amount of variables that must be treated as symbolic [49].
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3
Dynamic analysis through

hardware-assisted virtualization

D
ynamic analysis techniques can be roughly classified in two main cate-
gories: those that leverage user- or kernel-level components and those
that leverage emulation and virtualization to work “out-of-the-box”.

Techniques belonging to the first category are usually extremely convenient
when dealing with user-level, non privileged targets. There are many success-
ful tools and frameworks that are well-suited to dynamically analyze user-space
targets, by either leveraging system libraries (e.g., gdb [121]), or binary instru-
mentation (e.g., PIN [73], Valgrind [93]). When dealing with the analysis of
kernel-level targets, on the other hand, such “in-the-box” approaches are much
more complicated and often require a priori modifications of the target kernel
(e.g., Dtrace [21]), or to load new components that dynamically modify the target
itself (e.g., KernInst [131]), to install hooks that will be later used by the tools to
intercept events of interest. These approaches work well to trace the execution
of targets (both at user- and kernel-level) that do not try to detect or escape the
analysis environment and whose behavior is not influenced by the environment
itself (think, for example, of a buggy program that only exhibits a faulty behavior
when not being debugged). Unfortunately, these conditions do not always hold,
especially when dealing with malware [35], or benign software that do not want
to be analyzed [32].

Out-of-the-box approaches strive to solve limitations of their in-the-box coun-
terpart but, unfortunately, suffer from some issues as well. They are based on
running the target as a guest of a virtual machine, and then performing the
analyses from outside, i.e., from the hypervisor [43, 25, 62, 34, 12, 106, 144, 78].
Unfortunately, problems of such out-of-the-box approaches are manifold. First,
they require the target to be natively bootstrapped as a guest of a virtual ma-
chine, and this is not always possible, especially when dealing with production
systems. Second, the target may require to interact with particular hardware
devices to work properly, and emulation of uncommon hardware is often un-
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available in commodity hypervisors and must be implemented manually. Last,
but of no lesser importance, the transparency of software virtualizers and em-
ulators has been brought into question by the discovery of many so-called “red
pills” [110, 80, 81, 102]. A red pill is a piece of software that behaves differently
when executed on a real or emulated CPU. Malware authors embed such code
snippets into their malware to detect the presence of analysis environments and
consequently hide any suspicious behavior.

In this chapter we present some improvements over a framework we presented
earlier [39]. In particular, we proposed a framework that brings together the ad-
vantages of both approaches: it can be used on commodity production systems
(i.e., off-the-shelf products, whose source code or debugging symbols are not nec-
essarily available), since it does not require to instrument the system under test,
and it is able to inspect systems running on real hardware, since it does not require
an emulation container [39]. Thanks to its features (fully dynamic, transparent,
loosely dependent on the target operating system), our framework can be used to
analyze any running production system, without any need to modify it. More-
over, since the framework itself is not accessible from the target, its presence
is hard to be detected by malicious code. To obtain such desiderable features,
the framework leverages hardware support for virtualization available on com-
modity x86 CPUs [92, 4], that we illustrated in section 2.2. Furthermore, to
enable the analysis of running operating systems (a strong limitation of software
virtualization-based tools) we exploit a feature of the hardware that allows to
install an hypervisor and to migrate a running system into a virtual machine at
runtime. This feature is part of hardware support for virtualization and is known
as late launching.

In this chapter we illustrate the internals of our framework, that constitutes
the basis of all the work presented in this dissertation. Furthermore, we discuss
the improvements that we made to our framework. These improvements include
the support for extended page tables (EPT) and EPT based watchpoints and
breakpoints, along with the implementation of some virtual machine introspection
techniques for Windows 7 and Linux guests.

3.1 Overview of the framework

One of the most peculiar features of our framework is its ability to be installed on
live system that do not natively provide any pre-existing software support (e.g.,
hooks in the kernel). Indeed, it operates as a minimal hypervisor and only re-
quires a CPU with hardware support for virtualization (that is nowadays present
on most Intel [92] and AMD [4] CPUs, as well as on some ARM architectures [46]),
which we presented in section 2.2. Differently from other hardware-assisted hy-
pervisors [11] that require to be the first piece of software launched during a
machine boot, we leverage late launching to temporarily migrate a running op-

15



Chapter 3. Dynamic analysis through hardware-assisted virtualization

Operating system kernel

User
process

User
process

User
process

Framework Analysis tool

E
n

tr
y E

xit

Event Notification

Register Event

Inspect

Non-root mode
Root mode

Hardware

Figure 3.1: Overview of the framework

erating system in a virtual container.
Practically speaking, we do not move, or modify, the running operating sys-

tem at all. On the other hand, by enabling hardware support for virtualization,
the execution environment is extended with the two operating modes that we
illustrated in section 2.2: root mode and non-root mode. The running operating
system is associated to non-root mode, while the hypervisor is associated to root
mode. By doing so, the operating system and its applications actually become a
guest of a virtual machine, under the control of our hypervisor framework. Sim-
ilarly, the hypervisor can be unloaded, and the original mode of execution of the
operating system restored, by simply disabling hardware support for virtualiza-
tion.

A similar approach has been used in Eudaemon, by Portokalidis and Bos [105],
a system to detect and block exploitation attempts. Eudaemon can attach to
a running process and literally migrate it into an user space emulator, where
it will be dynamically analyzed. Once the analysis is over, possibly detecting
and blocking an exploit attempt, the eexecution can be seamlessly return to the
native binary. Our late launching based approach is conceptually equivalent,
but while user space emulation is sufficient for Eudaemon, we leverage hardware
assisted virtualization to transparently migrate a whole operating system under
the control of our framework.

As soon as our hypervisor finishes loading, the guest continues to run unaf-
fected, except for the fact that its execution might be interrupted by an exit to
root mode. Being executed at the highest privilege level, the routine that handles
the exit has complete read/write control of the state of the guest system (of both
memory and CPU registers).

Figure 3.1 depicts an overview of our framework. As we can see, the framework
operates in root mode and exports an API that allows to build custom tools that
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Event Exit cause Native exit

ProcessSwitch Change of page table address
√

Exception Exception
√

BreakpointHit Debug except. / Page fault except.
WatchpointHit Page fault except.
SyscallEntry Breakpoint on syscall entry point
SyscallExit Breakpoint on syscall return address
IOOperationPort Port read/write

√

IOOperationMmap Watchpoint on device memory

Table 3.1: Main traceable events

interact with it to dynamically analyze the target system. The framework itself
does not perform any analysis; rather, it acts as a bridge between the target
system and the analysis tool. This greatly eases the task of creating tools that
operate in root mode, hiding all (or most of) the intricacies of working in this
execution mode.

As we specified in section 2.2, a hardware assisted hypervisor gets executed
only when the guest OS triggers an exit to root mode. Our framework takes care
of intercepting and handling every exit triggered by the guest. Furthermore, it
also creates a high level representation of the low level event that triggered the
exit, possibly sending a notification of this event to an analysis tool. Analysis tools
built on top of our framework may indeed require to be notified when particular
events happens. A subset of the most important events that can be intercepted is
reported in Table 3.1. Each entry of the table distinguish between native events,
i.e., those that have a corresponding exit, and others that are usually created on
top of one or more low level ones. An example of native event is ProcessSwitch,
that is directly associated to exits triggered by a write operation on the cr3

control register (that contains the base address of the paging structures of a
process). More complex events, such as BreakpointHit, are derivation of other
events. For example, when using software breakpoints, the BreakpointHit event
is a particular case of Exception, while the SyscallEntry event is a particular
case of BreakpointHit.

As a final remark on events, please note that only some exits are conditional
while others are not. This means that the framework is always dealing with a
small set of exits that are unconditionally triggered, as those triggered by an
execution of the cpuid instruction, while others can be fine-granedly tuned ac-
cording to the need of the analysis tools. For example, exits can be enabled for
single exceptions types, and the framework can also control which exits to enable
dynamically, turning them on and off when needed. This allows our framework
to be extremely flexible and to avoid useless overhead.

Just like the framework is executed only when the guest triggers an exit, an
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Function Parameters

Tracing

SetBreakpoint cr3, Address
SetWatchpoint cr3, Address, Write/Read
RegisterEvent Event type, Event condition, Handler

Inspection

MapPhysicalPage Address
UnmapPhysicalPage Address
ReadPhysicalRegion Address, Size
WritePhysicalRegion Address, Size
GetPhysicalAddress cr3, Address
IsAddressValid cr3, Address
ReadVirtualRegion cr3, Address, Size
WriteVirtualRegion cr3, Address, Size
GetRegisters -

Table 3.2: Main API Functions

analysis tools is invoked only by the framework. To make it so, a tool must
register for at least one event. Once it gets executed, it can leverage the API of
the framework to enable/disable the tracing of events, or to inspect the state of
the guest. A brief summary of the main API functions and their parameters is
reported in Table 3.2.

API functions can be divided into two main branches: those for the tracing
of particular events and those to inspect the state of the guest once an exit is
triggered. So, for example, to use breakpoints, an analysis tools would at first
call RegisterEvent to register a handler for the BreakpointHit event, and then
invoke the SetBreakpoint to place a breakpoint on the desider address. Note that
this function, along with many others that deal with virtual memory, requires to
specify a cr3 value as a parameter. This is because the framework needs to know
in which address space of the guest to operate. Indeed, the cr3 register always
points to the base of the paging structures of the currently executing process and,
as we will see in section 3.2.3, this information is essential for the inspection of
the guest. If the analyzed guest is supported, however, it is possible to use the
OS-dependend API offered by our framework, and explained in section 3.2.4, to
retrieve the value of the cr3 for a particular process directly using its name.

3.2 Implementation details

In this section, we introduce some implementation details of our framework, and
explain if and how they were improved.
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3.2.1 Framework loading

The framework, along with any eventual analysis tool, is loaded by a minimal
kernel driver. Indeed, the initial operations we need to perform require to operate
in kernel mode.

We took extreme care in creating a driver as small and simple as possible,
to reduce to a minimum our influence on the running kernel. Once the loading
is over, furthermore, the whole driver can be removed. When VMX modes are
enabled, the VMCS is made accessible initially to the loader, and subsequently,
when the loading is completed, only to the framework. The main tasks of the
loader are to enable VMX modes and to configure the VMX data structure such
that the operating system and user-space applications continue to run in non-root
mode, while the framework and the analysis tool are executed in root mode. This
is obtained by configuring the guest state fields of the VMCS to perfectly reflect
the state of the guest OS just before switching to root mode for the first time.

Then, the driver prepares the host state fields for the launch, creating a private
address space for the hypervisor, and setting the address of the exit handler
function as its entry point. This function will work as a gate, receiving all exits
and dispatching them to the corresponding handlers.

Finally, the loader has to configure the CPU such that all the events necessary
for the tool to trace the execution of the system trigger exits to root mode. This
set of enabled events can be later modified according to the need of the analysis.
When the initialization is completed, the driver unloads itself and resumes the
execution of the system.

To make our framework robust, we must be sure that none of its memory
regions can be accessed by any component of the guest operating system. As
we said, during the initial loading phase, the VMCS is configured to grant the
hypervisor a private address space. However, this is not enough to protect the
framework from inferences of the guest operating system. Indeed, a kernel module
running in the guest could map any physical address by directly modifying the
paging structures of the guest and, thus, read any part of the hypervisor (assum-
ing it could get a leak to where the hypervisor is). To prevent this, our framework
includes a further protection layer, based on shadow page tables [117]. A shadow
page table is a copy of a real page table that is used to create a virtual-to-physical
translation different than the mapping contained in the original page table. In
particular, the hypervisor contains a shadow page table for each page table on
the guest system, and keeps a 1:1 mapping between these two tables, except for
entries mapping pages that the guest cannot access. This protection mechanism
has long been used by hypervisors, and it is the only solution if extended page
tables technology is not available [56]. However, as we discussed in section 2.2,
this introduces a great overhead in our framework. Indeed, the protection mecha-
nism is based on intercepting two events: context switches (ProcessSwitch), and
page faults (Exception). The first is required to “replace” the page table of each
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process with the patched one. The second is required because we need to inter-
cept attempts to map physical memory areas of the hypervisor, so we must trap
whenever software running in the guest accesses a page table. Thus, we modify
each page table entry that maps a page table itself, so that page tables are nor
readable nor writable. By doing so, each time the guest accesses page tables, a
page fault exception is thrown and intercepted by the hypervisor. For each fault,
the framework checks if the guest is trying to map a restricted memory area, or if
it is reading one of the modified page table entries. In both cases, the hypervisor
alters the operation to prevent software running in the guest from accessing its
memory areas, or to detect the presence of altered page table entries.

To prevent the overhead due to the use of shadow page tables, we improved
our framework to use extended page tables (EPT), on systems with such support.
As we explained in section 2.2, EPT allow a hypervisor to directly control how
the guest accesses physical memory. As soon as the hypervisor is loaded, indeed,
it takes care of identifying where it has been placed in physical memory by the
loader module. Then, to prevent the guest from accessing this areas, it alters
the corresponding EPT entries so that every access to these area is redirected
on a different page. It is clear to see how this mechanism is extremely more
efficient: there is no more need for the hypervisor to intercept either cr3 writes
or page faults. Furthermore, we will see in section 3.2.2, EPT plays also a key role
in the implementation of efficient, and completely transparent, watchpoints and
breakpoints. At load time, the framework sets EPT paging structures to create a
1:1 mapping between every guest-physical and host-physical address, except for
entries corresponding to the hypervisor, that are made inaccessible to the guest.

3.2.2 Guest tracing

Despite being commonly used, and a well established concept in debugging, break-
points and watchpoints are two of the most complicated events to implement in
root mode. Most CPUs provide hardware breakpoints and watchpoints, that are
easy to use and transparent. By using a set of debug registers, it is indeed possi-
ble to cause a debug trap whenever a virtual address is accessed, either in read,
write, or execution, according to the registers configuration. Unfortunately, such
registers are limited in number: only 4 are available (DR0,..., DR3) to specify
on which address to place a breakpoint/watchpoint. Furthermore, these registers
are shared between the hypervisor and the guests. Therefore, they cannot be
used simultaneously by the analyzed system and by the framework.

To bypass this problem and allow an arbitrary number of breakpoints, our
framework originally used software breakpoints. Software breakpoints are usually
implemented by replacing the first byte of the target instruction with a one-
byte instruction that triggers an exception when executed. In particular, we
implemented software breakpoints using a standard technique, i.e., by replacing
the byte at the address on which a breakpoint must be set with an int 3 (0xcc).
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When the CPU executes such instruction, it triggers a #BP exception that can be
easily intercepted by the hypervisor. The corresponding exit is handled by the
hypervisor restoring the byte of the original instruction and possibly notifying the
event to an analysis tool. Then, if the breakpoint is not persistent the execution
of the system is resumed. Otherwise, we configure the guest to perform a single-
step, by raising the Trap and Resume flags in the EFLAGS register of the guest
(altering the value stored in the VMCS). By doing so, the guest will execute the
faulty instruction, that no more triggers a #BP because it has been restored but,
after the CPU executes it, a debug exception (#DB) is triggered, causing an exit.
Indeed, the hypervisor is configured to intercept such exceptions, and handles
them by replacing once again the instruction with a software breakpoint then
continuing the execution of the guest.

We use this technique to avoid the need for emulation: without it, all faulty
instructions would need to be emulated. Using single stepping, instead, we can
avoid emulation, but this is not always possible as some instructions still need to
be manually handled. For example, consider a pushfd instruction: single stepping
over it causes the pushed EFLAGS to include the single step flag, meaning that the
first following popfd restores this wrong value, possibly modifying the behavior
of the target. During the implementation of our framework, we found a set
of instructions that cannot be easily single-stepped on and included emulation
procedures for each of them in our hypervisor. When stepping, we also lower the
interrupt flag, so that interrupts cannot transfer the execution flow out of the
target before we can re-enable the protection.

Clearly, the approach to breakpoints we just described is not transparent for
the analyzed system (i.e., a malicious program could spot a software breakpoint
and alter its behavior). An alternative and transparent approach is to use the
same technique we use for watchpoints, as described in the next paragraph. Our
framework supports both approaches.

In our framework, watchpoints are based on shadow page tables. As we said
in section 3.2.1, such mechanism allows to define custom protection for any mem-
ory location of the guest, thus, we leverage it to implement transparent watch-
points [135]. More precisely, when we need to place a watchpoint on a given
memory address, we alter its entry in the paging structures of the guest to re-
move access permissions (either read or write) according to the kind of required
watchpoint. By doing so, as soon as the guest tries to access that memory area, a
page fault (#PF) is triggered. As for #BP, #PF exceptions can be easily intercepted
by the hypervisor, but they require a more careful handling. More precisely, to set
a watchpoint we need to remove access permissions from a whole page, thus not
every intercepted #PF automatically implies that a watchpoint has been hit. Each
#PF-triggered exit is inspected by the hypervisor, to check whether the faulty ad-
dress corresponds to a watchpoint. If this is the case, the framework delivers the
event to the analysis tool, otherwise (or if the watchpoint is permanent), we use
the same single-stepping approach that we illustrated for software breakpoints.
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Obviously this approach increases the run-time overhead, due both to the huge
number of synthetic page fault exceptions it generates and to the interception of
every page fault that is triggered by the guest; however, it also guarantees a
higher level of transparency to both the guest operating system and user-space
applications.

If available, extended page tables can be used to implement watchpoints. In
particular, the same approach based on shadow page tables can be implemented
leveraging EPT, with the only difference that we need to work on physical rather
than virtual addresses (recall that the mapping controlled by EPT paging struc-
tures is between guest and host physical addresses). Thus, at first the framework
translates the virtual address on which the breakpoint must be set, by using
guest memory handling primitives (explained in section 3.2.3). Then, it alters
the appropriate EPT entry to remove permissions as required by the operation
to be performed (i.e., execution for breakpoints, read and/or write for watch-
points). This causes the triggering of an EPT violation as soon as the guest
attempts to access a protected physical page, according to the removed permis-
sion. The exit handling routine of the framework checks if the faulty address
matches one on which a watchpoint was set—this is not always the case, since
we work at a page-level granularity—and possibly delivers the event. This alter-
native approach is much more efficient than its software counterpart: there are
no artificial events (#BP or #PF) to be masked and paging structures of the guest
must not be modified (consequently removing the need to mask this changes for
transparency). However, working at a lower level (i.e., physical memory) rather
than directly modifying page tables requires special care. For example, if a break-
point is placed on a physical page that is shared between two or more processes
(e.g., a shared library), each one of them will trigger a violation when accessing
such page. Thus, the framework must identify the process that is triggering the
violation, to allow tools built on top of our framework to filter watchpoint and
breakpoint events according to the triggering process.

As we briefly mentioned earlier, many other higher-level events, such as system
calls, are traced through breakpoints. For example, to trace system calls we put
a breakpoint on the entry point of the system call gate [33].

3.2.3 Guest inspection and manipulation

The framework provides API functions to inspect and manipulate the state of the
guest operating system. In particular, we allow to inspect the registers and the
memory of the guest. Inspecting registers is trivial: some of them are automat-
ically stored into the VMCS whenever an exit occurs, while others are saved by
the exit handling procedure of our framework. Functions are provided to analysis
tools to either read or write registers; writes will be reflected in the guest when
performing an entry.

Inspection and manipulation of the memory of the guest are, unfortunately,
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more complex. With paging, virtual addresses are translated by the MMU into
physical addresses according to the content of the page table and direct physical
addressing is not possible. The page tables of a process can always be accessed
through the cr3 register, that points to the base of the first level paging structure
(the Page Directory, on a 32 bit system). During a context switch, the cr3 register
is swapped, so that every process has its own private address space (although,
some parts may be shared with other processes). This mechanism is essential in
every modern operating system, but it poses a problem for our framework. Even
if we operate in root mode, indeed, we are constrained to operate with virtual
memory addresses and can only access those memory areas that are mapped in
our own address space. Nonetheless, we want to directly access physical memory
as well as the virtual address space of any process running on the guest system.
That is to say, we want to “navigate” into the virtual memory of any process,
regardless of the actual value of the cr3 register. The most intuitive solution,
that we use in our framework, is to implement via software the same address
translation mechanism that is used by the MMU, so to use it with arbitrary cr3

values. Unfortunately, such register and paging structures always refer to physical
addresses and, thus, we still must rely on a procedure to read physical memory.
To overcome this problem, during the loading phase, the module sets up the
private address space of the hypervisor so that it can access paging structures at
a fixed virtual address. This is a common setup for many operating systems; for
example, windows sets a virtual-to-physical mapping of paging structures in the
virtual address range 0xc0000000:0xc0400000. Once this mapping is created,
the loader module sets the cr3 that will be used by the hypervisor in the host cr3

field of the VMCS. As a consequence of this setup, when in root mode, it will be
possible for our framework to alter its own paging structures by only referring to
virtual addresses.

Each time the framework needs to read (or write) a physical page, it modifies
its paging structures to map it into the first unused virtual address. With a prim-
itive to read from physical addresses, then, it is straightforward to implement the
aforementioned software MMU and, consequently, read from any virtual address
space of the guest. On top of this mechanism, we implemented all memory-related
inspection functions listed in Table 3.2.

3.2.4 OS-dependent functions

Every function in the API provided by our framework is generic, and it works
regardless of the guest operating systems. In some situations, however, it may be
useful to have some high level information at avail. For example, every inspection
function of our framework that deals with virtual memory addresses requires a
cr3 value as parameter, to indicate which virtual address space to inspect. This
piece of information, by itself, is enough to univocally refer to a process in the
guest system. For a user of our framework, however, using this 32-bit identifier
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Name Description

GetFuncAddr(n ) Return the address of the function n
GetFuncName(a ) Return the name of the function at address a
GetProcName(cr3 ) Get the name of process given its cr3

GetProcPID(cr3 ) Get the PID of process given its cr3

GetProcByName(n ) Get info (PID, cr3, . . . ) of process with name n
GetProcList() Enumerate processes
GetDriverList() Enumerate device drivers
GetConnectionList() Enumerate network connections

Table 3.3: Main functions of the OS-dependent API

to refer to a process may be cumbersome, as it is much more natural to use its
name, or its PID.

For this reason, we decided to include a set of OS-dependent functions in our
framework, some of which are summarized in Table 3.3, to make the analysis of
certain guests more comfortable. All of these functions rely on virtual machine
introspection techniques (VMI) [43] to analyze the internal structures of the guest
operating system to translate OS-independent information into something more
user-friendly. In the following of this section, we give some details of the OS-
dependent API of our framework.

Flink
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PID
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Figure 3.2: Process list in the guest memory

Figure 3.2 reports the typical layout of the kernel structures that contain
information on processes. In the Figure we use names from the Windows kernel,
but the structure is almost equivalent on Linux. All the functions in the GetProc

family inspect this structures to extract information on processes. As it is possible
to see, parsing these structures is quite straightforward: being a circular double-
linked list, the framework starts from the first process and just keeps following
the forward link until it gets back to the beginning. Each structure contains a
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plethora of information about each process (such as its name, its PID, and so
on).

To find the first entry of the linked list, we leverage either symbols (Ps-
InitialSystemProcess on Windows) or exported variables (init task on Linux).
As an alternative, when such starting points are not available, we revert to other
techniques. On Windows 7, %fs:0x20 always points to the base of the kernel
processor control region (KPRCB). The KPRCB contains a pointer to the currently
executing thread that in turn points to the EPROCESS structure of its owner pro-
cess. This structure is an entry in the linked list of processes, so we can reach
every other process starting from this entry. A similar technique can be used for
Linux guests, with the difference that we retrieve the pointer to the thread info

structure of the currently executing thread by masking out the lowest 13 bits
of the kernel stack pointer. From there, just like on Windows, it is possible to
retrieve a pointer to the task struct of the current process and navigate the
linked list from there.

Network connections are not as friendly to inspect as processes and drivers,
since their implementation strongly differs in Linux and Windows. Introspecting
network connections of a Linux guest is quite straightforward, since Linux fol-
lows the well established UNIX concept that “everything is a file”. Indeed, each
process that makes use of a network connection has a file descriptor associated to
each open socket. The hypervisor can inspect open file descriptors of a process by
looking at the same structure used by the GetProc family functions. In particular,
the process-related structure contains pointers to a list of other structures, con-
taining information on open file descriptors. The GetConnectionList() function
inspects the open file descriptor list for each process. Each entry in the list is then
inspected to determine which one corresponds to a network connection. Entries
identified as such contains a wealth of information, such as the network protocol
(e.g., TCP, UDP), the state of the connection (e.g., ESTABLISHED, LISTENING), local
and remote ports, and so on.

Extracting network connections from a Windows guest is more complex, and
the required introspection techniques vary greatly according to the Windows ver-
sion. Contrarily to Linux, on Windows network connections are stored centrally,
inside the tcpip.sys driver. Under Windows XP, this driver contains tables with
an entry for each connection that specifies local and remote ports and addresses,
plus the PID of the process that opened the connection. Under Windows 7,
tcpip.sys internal structures are not so straightforward, as they include mul-
tiple layers of tables and hashtables that must be carefully parsed to extract
network connection information. Given the great complexity of the structures in-
volved in this introspection technique, we do not linger on details of their parsing
and refer to [104] for further details. As was the case for Linux guests, where we
relied on the GetProcList function, even in Windows guests we need to rely on
other OS-dependent features. In particular, we need to find the address where
tcpip.sys is loaded in memory, since this is the base to find its internal struc-
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tures, and this can be done using functions to retrieve information on loaded
modules.

Finally, note that some OS-dependent functions, such as GetFuncName rely on
the availability of debugging symbols for the analyzed guest. If symbols are not
available, such functions are automatically disabled, while others, that purely rely
on VMI, are unaffected. If the guest operating system is not supported, however,
OS-dependent functions are disabled, and only OS-independent functionalities
are available. Our current implementation offers an OS-dependent interface for:
Windows XP, Windows 7, and for some Linux kernel versions.

3.3 HyperDbg: a Kernel Debugger

The first analysis tool that was built on top of our framework is HyperDbg, an
interactive kernel debugger. The current implementation of HyperDbg supports
Microsoft Windows XP, Windows 7, and Linux. We released the code of Hyper-
Dbg, along with the code of the framework, under the GPL (v3.0) license. The
code is available at:

http://code.google.com/p/hyperdbg/

We recently ported the core of our framework to 64 bit Intel architectures and
implemented an additional loading driver for Mac OS X, but these parts have
not been released yet.

Thanks to the fact that it is built on top of our framework, HyperDbg is run in
root mode, it is OS-independent and grants complete transparency to the guest
operating system and its applications. The debugger has a very rough graphical
user interface that is activated either when the user invokes the debugger by
pressing a special hot-key, or when an event occurs that requires the attention of
the user (e.g., a breakpoint is hit). Once in root mode, the user interacts with
the debugger to perform several different operations, such as setting breakpoints,
single stepping, inspecting the state of the guest, and so on.

Figure 3.3 shows HyperDbg in action under a Windows 7 guest. In particular,
the first screenshot shows the list of commands available to HyperDbg users.
Every one of them is built on top of the API that we presented in Table 3.2, or
leveraging OS-dependent functions (section 3.2.4). Such functions are also used
to facilitate the debugging. For example, the second screenshot in Figure 3.3
shows the list of the processes in the guest.

Since HyperDbg is run on top of our hypervisor framework, it can be used to
debug any part of the guest, including critical components such as the process
scheduler, or interrupt handlers.

The remaining of this section describes how we used the facilities of our frame-
work to implement the user interface and the component to receive commands
from the user.
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Figure 3.3: HyperDbg graphical user interface
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3.3.1 User interaction

The main mean of interaction between the user and HyperDbg is the keyboard.
To allow a user to control HyperDbg, our debugger must interact with the key-
board both in root and non-root mode. Indeed, when in the latter, the user can
invoke the debugger by pressing a key (or a combination of keys). Once in root
mode, then, HyperDbg reads every keystroke of the user, so that he/she can input
his/hers commands.

Luckily, hardware assisted virtualization offers a very convenient mechanism
to intercept keystrokes when in non-root mode. Indeed, we can configure the VM-
execution control fields to enable exits for each read operation on the I/O ports of
the keyboard. From a higher level perspective, this can be configured by Hyper-
Dbg (or any other analysis tool) by registering an handler for IOOperationPort

events that satisfy the condition port =KEYBOARD PORT && access =read. For
each keystroke, the handler checks whether the pressed key corresponds to the
configured hot-key (F12 by default). If so, the debugger opens its graphical in-
terface and waits for further user input. Otherwise, the handler emulates the
read operation and returns to the guest. We decided to leverage emulation in
this situation, rather than using the single step based approach used for break-
points, because read operations on I/O ports are trivial to emulate. On the other
hand, to interact with the keyboard in root mode, HyperDbg uses a very simple
polling-based method that continuously reads from the I/O ports of the keyboard
waiting for the user input.

HyperDbg keyboard driver for root mode does not have any limitation with
PS/2 keyboards but it cannot handle USB peripherals. This is due to the com-
plexity of USB controllers, much greater than PS/2. Furthermore, while PS/2
controllers are quite stable, given their age, there are many USB version and
implementations, that often coexist on the same machine and require custom
handling and interaction procedures. The lack of support for USB greatly limits
the usability of HyperDbg, since more and more motherboards are produced with-
out PS/2 ports. For this reason, we are investigating solutions to make HyperDbg
more usable, even in the presence of USB keyboards.

3.3.2 User interface

As observed from Figure 3.3, the GUI of HyperDbg is quite rough and bare.
Nonetheless, its implementation is everything but simple. The main reason be-
hind this is that since HyperDbg operates in root mode, it cannot rely on any
high-level function offered by the guest OS to interact with the graphic hard-
ware. This forced us to write our own driver for the video card. The main
interaction with graphical hardware happens through video memory: the driver
maps the video card memory into virtual memory, and directly writes into this
memory area. Such writes will be reflected by the video hardware on the screen
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attached to it. HyperDbg video driver takes care of locating, through a PCI bus
scan, the physical address of the video card and mapping it into its own address
space, to make it accessible through a virtual address when in root mode. On
top of this driver, we developed a small video library that allows to draw 8x12
pixels fonts on arbitrary coordinates on the screen. HyperDbg uses this library to
draw its GUI as soon as it is triggered by the user, or by an event. The driver
takes care of saving the content of the video card memory just before writing to
it, so that it is possible to restore its original state before entering in the guest.

The main limitation of our “low hanging fruit” approach to handle graphic
hardware is that it cannot deal with modern graphic accelerators. Indeed, we
basically operate in a VGA standard mode in which RGB values for each pixels are
written directly in the graphic card memory (according to the card configuration,
either 8, 16, 24, or 32 bits per pixel). When accelerated mode is used, values
in such memory do not represent single pixels anymore. Rather, such memory
is used for communication between the hardware and a driver that can perform
complex tasks more efficiently (e.g., ask the hardware to draw a square on the
screen rather than writing each single pixel of the square in the correct memory
location). Thus, if the graphic card is in this mode when HyperDbg is loaded,
its user interface may not work properly. The best workaround for this problem
would be to implement small drivers to handle as many hardware accelerated
graphic cards as possible and embed them into our debugger. Given the often
closed-source nature of this hardware, however, it would be a daunting task.

An alternative to the graphic interface we recently developed in HyperDbg,
that also bypasses the problem of USB keyboards, is to leverage an in-guest user-
space program to provide a gdb-like interface to our debugger. Such software
communicates via hypercalls (see section 2.2) with the hypervisor, that exposes its
API through this guest-to-hypervisor communication interface. This approach,
however, suffers from two main problems. First, launching a process in the guest
greatly reduces our claims of having a minimum impact on the guest system,
thus it could be used only under certain circumstances. Second, events can be
handled only asynchronously. For example, hitting a breakpoint causes the guest
system to completely freeze until the hypervisor performs an entry, including
the user-space interface, that is unable to perform any action in response to
the event. To overcome this limitation, user-space program uses an approach
analogous to gdb command directive that allows to define a set of commands to be
executed when a breakpoint is hit. By doing so, the user-space interface instructs
the hypervisor to trap an event and perform some actions in response to this
event. To communicate the results of the operations to the user-space process,
the hypervisor uses its memory handling primitives, explained in section 3.2.3, to
write results directly into the memory of the process.

Yet another alternative, similar to what Xen [11] does, consists in creating a
second virtual machine, parallel to the analyzed guest, in which to run a full op-
erating system. We will call this the analyzer guest for clarity. Software running
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in the analyzer guest could leverage the API of our framework, exposed through
the hypercall interface, as in the aforementioned solution, to inspect and trace the
analyzed guest. By doing so, analysis procedures run in the analyzer guest would
benefit both from our framework and from the facilities of the analyzer guest
(e.g., network and graphic libraries). While very promising, this solution would
greatly increase the complexity of our framework. For instance, since it is loaded
at runtime through late launching, we would need to reorganize the resources
of the analyzed guest to allow the boot of the analyzer guest (e.g., get enough
memory), and create a mechanism to quickly switch between the analyzed and
the analyzer guests. In the current implementation, indeed, our lightweight hy-
pervisor is configured to deal with just one guest. Nonetheless, given the amount
advantages that an analyzer guest would introduce, we will inspect this possibility
as a future development of our framework.

3.4 Discussion

In this chapter we described an analysis framework that provides an isolated ex-
ecution environment to run security tools. Once installed, such environment can-
not be altered by any malicious program. However, if the system to be analyzed
has already been infected, then a malware controlling the machine can still tam-
per with the framework before it is installed, thus making the whole infrastructure
completely ineffective. In this situation, a possible solution is to attest that the
module responsible for loading the analysis infrastructure runs un-tampered, and
that the framework itself is not modified by the malware during the installation
process. Conqueror by Martignoni et al. supports this kind of attestation, with
the only requirement of having a trusted host in the same local network [79].
Another possibility is Intel Trusted Execution Technology (TXT) [47] that has
been recently introduced on Intel CPUs to, among other things, permit a veri-
fiable and secure launch of an hypervisor. Intel TXT has also been extensively
investigated as a support for trusted computing by McCune et al. [84].

The effectiveness of our hypervisor framework depends on the impossibility
to detect its presence from the guest. There has been much discussion about
the transparency of hardware-assisted hypervisors: several researchers believe
hypervisors necessarily introduce some discrepancies and suggest a number of
detection strategies [40, 2], while others insist this is not always the case, and that
similar techniques can be evaded [111]. In our opinion, writing an undetectable
hypervisor is extremely challenging, if not unfeasible [42]. For example, timing
analysis is very effective in detecting running hypervisors, especially when the
analysis is performed by an external entity, with a real perception of time. The
reader could argue that malware authors can use similar strategies also to detect
our analysis framework. Anyway, we believe it is not realistic to assume that a
malicious program can rely on an external entity to perform the timing analysis,
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and internal time sources can be altered by the hypervisor. Furthermore, the
malware would need precise timing information for each infected system, and this
seems, at the very least, unlikely. Alternatively, malware might attempt to detect
our running hypervisor by trying to install another hypervisor. One approach to
contrast such attempts is to let the malware believe that virtualization support
is not available at all.

Secondly, it is worth noting that hypervisor detection techniques can check if
a VMM is installed on the system, but they cannot easily discern what kind of
hypervisor is actually present (at least with timing-based techniques). With the
widespread diffusion of virtualization technologies, this kind of detection is often
too coarse grained. A malware that hides its malicious behavior on a machine
only because it finds a running hypervisor will not be able to infect many of the
virtualized environments in use today (e.g., Amazon EC2).

To conclude, we must introduce direct memory access (DMA) attacks [141].
A malware running inside a guest operating system can leverage hardware devices
that have DMA capabilities (such a network interface card or a firewire device)
to access memory areas of the hypervisor, bypassing memory virtualization. A
possible solution to this problem is to leverage Intel VT-d [54]. This support is
natively conceived to isolate and restrict device accesses to specific guests but it
can also be used to protect the address space of the hypervisor, since it allows to
prevent guests from accessing particular memory areas via DMA.

Even with such a support, however, the handling of I/O virtualization is
extremely complex and dangerous errors are always possible. As recently discov-
ered [41], indeed, it is possible to exploit misconfigurations of interrupt or DMA
remapping to crash the hypervisor (thus freezing the whole physical system) or
even to “escape” from the guest and execute code with hypervisor privileges.

The current implementation of our framework needs to be further improved
for what concerns DMA attacks, and we are working to include support for VT-d
technology, in order to better protect our hypervisor against such attacks.
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4
Hypervisor-based malware protection

with AccessMiner

T
he problem of detecting attacks and malicious applications at the host
level has been largely studied by both research and industrial communi-
ties. The most common solutions are based either on matching static sig-

natures or on using behavioral models to specify allowed or forbidden behaviors.
Signatures works well to identify single malware instance but they quickly become
ineffective when the attacker adopts obfuscated or polymorphic code [72, 91]. At
the same time, most behavior-based detection techniques follow a program-centric
approach that focuses on modeling the execution of individual programs. These
models often lack the context to capture how generic benign and malicious pro-
grams interact with their environment and with the underlying operating system.
As a result, detectors based on program-centric behavioral techniques tend to
raise alerts whenever a new program is encountered or an existing program is
used in a different way. This typically leads to unacceptably high false positive
rates—thus limiting the practical applicability of these approaches.

AccessMiner [67] introduced a novel system-centric technique to model the
activity of benign programs. The main idea behind AccessMiner approach is
that, given enough training, it is possible to identify common patterns in the
way benign applications interact with the operating system resources. For in-
stance, while normal programs typically write only to their own directories (and
to temporary directories), malware often attempt to tamper with other applica-
tions and critical system settings, often residing outside the normal application
“scope”. As a result, special access activity models can be derived by AccessMiner
only by looking at the execution of a broad set of benign applications. Therefore,
traces of malware execution, often problematic to collect from a coverage and
diversity point of view, are not required to train our classifiers.

While experiments showed that AccessMiner system-centric approach was suc-
cessful in identifying a large amount of diverse malware samples with very few
false positives, a number of important points were not addressed in the origi-
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nal paper. In particular, the original approach was designed to be implemented
as part of the Windows operating system kernel. However, the threat scenario
rapidly changed in the last years, moving from traditional user-space malware
toward more sophisticated rootkits techniques. The rise of targeted attacks also
pose new challenges that are not fully addressed by current methodologies. For
example, by carefully combining a mix of social engineering, zero days exploits for
unknown Windows vulnerabilities, and stolen certificates to sign kernel modules,
motivated and well-funded attackers can quickly subvert the target OS and re-
main undetected for long periods of time (as the Stuxnet [125], Duqu [124], and
Flame [126] incidents have shown). This being considered, the original imple-
mentation of AccessMiner fails to respect one important prerequisite of malware
analysis, as identified by Rossow et al. [107]: operate at a privilege level higher
than the malware.

Since a successful targeted attack could easily tamper with OS-based detec-
tion mechanisms, in this chapter we describe a new version of AccessMiner, and
how it can be implemented on top of the bare metal hypervisor-based analysis
framework we illustrated in chapter 3. This new solution makes the detector
much more resilient to sophisticated attacks, but also introduces several techni-
cal problems and challenges. First, in order to collect the same information and
monitor the system calls issued by each process, a hypervisor has to solve the
so-called semantic gap. Our framework gracefully tackle this problem, allowing
solutions built on top of it to rely on its virtual machine introspection API (see
section 3.2). Yet, as we will see, we need to introduce some custom improvements,
to make it suitable for AccessMiner requirements. Indeed, even though many so-
lutions exists for this problem, other hypervisor-based detection countermeasures
do not scale well to several scenarios (e.g., critical infrastructures), due to their
high computational requirements that conflict with the strict timing constraints
of the running applications. The challenge here is to use a light-weight approach
that does not impact the performance of the system in a prohibitive way.

4.1 System call data collection

In this section, we describe how the set of system call traces used by AccessMiner
to build access activity models was collected. Access activity models are built
by AccessMiner to generalize how benign programs interact with the operating
system, and are later used to identify potentially malicious programs that do not
respect a model.

The data collection framework that was built to gather data for access activity
models is capable of extracting a rich set of attributes for each event (i.e., system
call) of interest. The system consists of a number of software agents, which,
once installed on users’ machines, automatically collect, anonymize, and upload
system call logs to a central data repository, which normalizes the data for further
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analysis. The software agents can be installed by users on their own machines
and are mindful of system load, available disk space, and network connectivity.
Furthermore, users can enable and disable the collection agent as they wish.

AccessMiner analysis and training algorithms need several information regard-
ing each system call. Therefore, our sensors were designed to collect the syscall
number, its arguments, its result (return code), the issuing process ID, name, and
parent process ID. Each log entry is represented by a tuple in the form:

〈timestamp, program, pid , ppid , system call , args , result〉

This data allows to perform analyses within a single process, across multiple
executions of the same program, or across multiple programs.

None of the components of the collection framework was implemented at the
hypervisor level. This design choice may look a puzzling contradiction of every-
thing we said so far. Instead, it was based on the assumption that users’ machines
were not compromised at the time of collection, and on the observation that it
is much simpler to leverage components that can interact with the OS primitives
to perform collection tasks (e.g., pushing data to the repository).

4.1.1 Raw data collection

The software agent that collects data is a real-time component running on each
user’s machine. This agent consists of a data collector and a data anonymizer.
The description in the remainder of this section provides details specific to the
Microsoft Windows platform, the system for which the collector was implemented.
The data collector is a Microsoft Windows kernel module that traces system
call events and annotates them with additional process information. The data
anonymizer transforms the collected system call data according to privacy rules
and uploads it to the remote, central data repository.

Kernel collector. The main goal of this component is to collect system call
and process information across the entire system. In order to intercept and log
system call information, the kernel data collector hooks the SSDT table [52]. The
kernel collector logs information for 79 different system calls in five categories: 25
related to files, 23 related to registries, 25 to processes and threads, one related
to networking, and five related to memory sections. Such system calls have been
selected to match those used by Anubis [57] that well characterize actions that
manipulate the resources of the operating system.

Log anonymizer. To protect the privacy of users, the arguments of various
system calls were obfuscated, or simply removed, before sending the log to the
data repository. The obfuscation consists of replacing part or the entire sensitive
argument value with a randomly-generated value. Every time a value repeats,
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it is replaced with the same randomly-generated value, so that we can recover
correlations between system call arguments. All arguments whose values specify
non-system paths (e.g., paths under C:\Documents and Settings are sensitive),
all registry keys below the user-root registry key (HKLM), and all IP addresses are
considered sensitive. Furthermore, the anonymization removes all buffers read,
written, sent, or received, thus both providing privacy protection and reducing
the communication to the data repository. The data repository indexes the logs
by the primary MAC address of each machine.

Impact on performance. The software agent was designed to minimize the
overhead on users’ activities. The kernel module collects information only for a
small subset of the 79 system calls. Logs are saved locally and processed out of
band before being sent to the server, when network connectivity is available. Users
can turn data collection on and off, based on their needs. Local logs are uploaded
to the repository when they reach 10 MB in size and logging is automatically
stopped if available disk space drops below the 100 MB threshold. Each 10 MB
portion of the system call log is compressed using ZIP compression, for an 95%
average reduction in size (from 10 MB to 500 KB).

4.1.2 Data normalization

The purpose of this component is to process raw system call logs and extract
fully qualified names of accessed resources as well as the access type. For files
and directories, the fully qualified name is the absolute path, while for registry
keys, it is the full path from one of the root keys.

To compute fully qualified resource names, the collector tracks, for each pro-
cess, the set of resources open at any given time, via the corresponding set of
OS handles. When a resource (file or registry key) is accessed relative to another
resource (either opened by the process or opened by the OS automatically for
the process), the collector combines the resource names to obtain a fully qualified
name.

Computing the access type (e.g., read, write, or execute) requires tracking the
access operations performed on a resource. This is more tricky than expected.
When a resource is acquired by a program (e.g, a file is opened), the program
specifies a desired level of access. This information, however, is not sufficiently
precise. This is because, often, programs open files and registry keys at an ac-
cess level beyond their needs. For example, a program might open a file with
FULL ACCESS (i.e., both read and write access), but afterward, it only reads from
the file. Since the collector must gather the actual access type, it tracks every
operations on a resource, and only when the resource is released (on NtClose),
it computes the access type as a union of all operations on the resource.
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4.1.3 Experimental data set

Data was collected by the collection framework from ten different Windows ma-
chines, each belonging to a different user. The users had different levels of com-
puting expertise and different computer usage patterns. Based on their role, the
machines can be classified as follows: two were development systems, one was an
office system, one was a production system, four were home PCs, and one was a
computer-lab machine.

Overall 114.5 GB of data were collected, consisting of 1.556 billion of system
calls, from 362,600 processes and 242 distinct applications.

4.2 System-centric models and detection

Several studies have shown that models based on system call sequences (n-grams)
have difficulties in distinguishing normal and malicious behaviors [67, 20]. One
of the main problem is that, while n-grams might capture well the execution of
individual programs, they poorly generalize to other applications. The reason is
that the model is closely tied to the execution(s) of particular applications; we
refer to this as a program-centric detection approach.

AccessMiner uses a model that attempts to abstract from individual program
runs and that generalizes how benign programs interact with the operating sys-
tem. For capturing these interactions, we focus on the file system and the registry
activities of Microsoft Windows processes. More precisely, we record the files and
the registry entries that Windows processes read, write, and execute (in case of
files only). We call this an “access activity model”.

The model is based on a large number of runs of a diverse set of applications,
and it combines the observations into a single model that reflects the activities of
all programs that are observed. For this to work, we leverage the fact that we see
“convergence”. That is, even when we build a model from a subset of the observed
processes, the activity of the remaining processes fits this model very well. Thus,
by looking at program activity from a system-centric view—that is, by analyzing
how benign programs interact with the OS—we can build a model that captures
well the activity of these programs. Of course, this would not be sufficient by
itself. To be useful, our model must also be able to identify a reasonably large
fraction of malware.

Creating access activity models. Access activity models capture normal
(i.e., benign) interactions with the file system and the Windows registry. An
access activity model specifies a set of labels for operating system resources. OS
resources are directories in the file system and sub-keys in the registry (sub-keys
are the equivalent of directories in the file system). For simplicity, in the following
we refer to directories and sub-keys as “folders”.
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A label L is a set of access tokens {t0, t1, . . . , tn}. Each token t is a pair
〈a, op〉. The first component a represents the application that has performed the
access, the second component op represents the operation itself (that is, the type
of access).

In the current implementation, AccessMiner refers to applications by name. In
principle, this could be exploited by a malware process that decides to reuse the
name of an existing application (that has certain privileges). As a future work,
we plan to replace application names by names that include the full path, the
hash of the code that is being executed, or any other mechanism that allows us to
determine the identity of the application that a process belongs to. In addition to
specific application names, we use the star character (∗) as a wild card to match
any application.

Initial access activity model. An initial access activity model reflects exactly
all resource accesses that appear in the system-call traces of all benign processes
that we monitored. Note that for this, we merge accesses to resources that are
found in different traces and even on different Windows installations. In other
words, we build a “virtual” file system and registry that contains the union of
the resources accessed in all traces.

Pre-processing. Before proceeding with the generation of the model, the ini-
tial model undergoes two pre-processing phases. First, a small set of benign pro-
cesses that either read or execute files in many folders is removed. This prevents
the generation of an excessively loose access activity model.

The second pre-processing step is needed to identify applications that start
processes with different names. We consider that two processes with different
names belong to the same application when their executables are located in the
same directory. Merging processes that have different names but that ultimately
belong to the same application is useful to create tighter access activity models.

Both these pre-processing step do not require a particular effort. The set of
benign process used by the first step is small, as it mainly includes Windows ser-
vices and programs, and anti virus software. The number of different applications
that belong to these categories is likely small enough so that a manually-created
white list could cover them. The second step is also pretty simple, and scales
linearly with the number of applications that run processes with different names.

Model generalization. The model is further refined in a last generalization
step. This is needed because we clearly cannot assume that the training data
contains all possible programs that can be installed on a Windows system, nor do
we want to assume that we see all possible resource accesses of the applications
that we observed. Also, the initial model does not contain labels for all folders
(recall that the access is only recorded for the folder that contains the accessed
entity).
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The generalization algorithm has four main steps, each of them refining the
knowledge contained in the model.

Step 1: identifies folders that are accessed by only one application as belonging
to this application and alters labels to reflect this ownership.

Step 2: identifies container folders, i.e., folders that are owned by many applica-
tions. A typical example of a container folder is the C:\Program Files directory.
Since a container holds folders owned by many different applications, its label
would deny access to all sub-folders that were not seen during training. As we
will see, folders identified as containers are subject to less tight controls in the
detection phase.

Step 3: merges access tokens in the label associated with a folder. For example,
if multiple applications perform identical operations in a particular folder, we
assume that other applications (which we have not seen) are also permitted similar
access.

Step 4: finally, the algorithm adds access tokens that were likely missed because
training data is not complete. In particular, labels that contains only write access
tokens to a folder are extended to include read operations too. The rationale for
this step is that an application that can write to resources in a folder can very
likely also perform read operations. While it is possible to configure files and
directories for write-only access, this is very rare. On the other hand, adding
read tokens allows us to avoid false positives in the more frequent case where we
have simply not seen (legitimate) read operations in the training data.

Model enforcement and detection. Once an access activity model M is
built, it can be deployed in a detector. More precisely, a detector can use M to
check processes that attempt to read, write, or execute files in directories or that
read or write keys from the registry.

The basic detection algorithm is simple. Assume that an application proc

attempts to perform operation op on resource r located in \path\dir. We first
find the longest prefix P shared between the path to the resource (i.e., \path\dir)
and the folders in the virtual tree stored by M . For example, when the virtual
file system tree contains the directory C:\dir\sub\foo and the accessed resource
is located in C:\dir\sub\bar, the longest common prefix P would be C:\dir\sub.
We then retrieve the label LP associated with this prefix and check for all access
tokens that are related to operation op (actually, after generalization, there will
be at most one such token, or none). When no token is found, the model raises
an alert. When a token is found, its first component is compared with proc.
When the application names match or when the first component is ∗, the access
succeeds. Otherwise, an alert is raised.

The situation is slightly more complicated when the folder that corresponds
to the prefix P is marked as container. In this case, we have the situation that a
process accesses a sub-folder of a container that was not present in the training
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data. For example, this could be a program installed under C:\Program Files
that was not seen during training. In this case, the access is permitted, both read
and write, to the container, so that the new resource (i.e., the subfolder) can
be created without triggering the detector. Moreover, the model is dynamically
extended with the full path to the resource, and all new folders receive labels
that indicate that application proc is its owner. More precisely, we add to each
label access tokens in form of 〈proc, op〉 for all operations. This ensures that
from now on, no other process can access these newly “discovered” folders. This
makes sense, because it reflects the semantics of a container (which is a folder
that stores sub-folders that are only accessed by their respective owners).

Whenever an alert is raised, we have several options. It is possible to simply
log the event, deny that particular access, or terminate the offending process.

4.3 Hypervisor framework design

In this section we present the design of the hypervisor based detector that imple-
ments the system centric technique presented in the previous section.

Our enforcement model exploits hardware virtualization support available in
commodity x86 CPU [92, 4], that we richly discussed in section 2.2. In particular,
we built AccessMiner detector on top of the framework we presented in Chapter 3.
By doing so, the detector module is tamper-resistant, efficient, and is able to
take over the OS operations and verify the policies derived from the AccessMiner
system, without requiring any previously installed support.

In the following of this chapter, for simplicity, we use the terms “framework”
and “hypervisor” to refer to the analysis framework presented in chapter 3, and
“detector” to refer to the AccessMiner module built on top of it.

4.3.1 Threat model

The threat model we adopt considers a very powerful attacker who can operate
with kernel-level privileges. On the other side, the attacker does not have physical
access to the machine and, therefore, cannot perform any hardware-based attack
and he cannot tamper with the hypervisor operations. We assume that our
hypervisor starts during the boot process of the machine and it is the most
privileged hypervisor on the system.

Is it also possible to leverage late-launching capabilities of the framework to
load it after the boot. For this to be feasible, however, we have to relax our threat
model a little. Indeed, we must assume that either there is no malware on the
machine before we launch AccessMiner or that we leverage an integrity checking
technique to ensure that the hypervisor is not altered at load time [79, 84]. Despite
this requirement, a hot-bootable detector module can be quite useful in scenarios
where it is not possible to restart the machine (e.g., when it provides some critical
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Figure 4.1: Hypervisor Architecture.

service).

4.3.2 Hypervisor architecture

The detector system is composed by three components: a system call interceptor,
a policy matcher, and a process revealer. The outputs of all the components
are combined together to check the policies derived by AccessMiner system. In
Figure 4.1, we depict a scheme of the overall architecture, hiding details of the
underlying framework.

Detection & management mode. Our detector supports two different op-
eration modes: Detection and Management mode. The first is responsible for
the detection of attacks against the system, while the latter is used to receive
configuration instructions from an external machine, using a dedicated network
protocol. To this end, we leveraged our framework capability to intercept a par-
ticular sequence of keystrokes, but we had to implement a custom network driver
from scratch.

Switching from Detection to Management mode is done by pressing a keystroke
sequence. The hypervisor can easily intercept every keystroke by registering for
I/O events of the keyboard (like shown in section 3.3) and, if the sequence is cor-
rect, it runs a communication procedure to receive and update its configuration.
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The communication protocol we implemented supports two types of commands:
one to receive policies configuration and one to load the new set of policies and
reset the state of the detector. Both commands are identified by a special identifi-
cation number. After setting up the configuration, the hypervisor automatically
switches from Management to Detection mode and it continues to perform its
real-time detection task. When running in detection mode, the detector is con-
figured to intercept and handle two privileged instructions: write operations on
Control Registers and alterations to Machine Status Registers (MSR) [55]. This
allows us to detect context switches among processes and to verify the trusted
path of our system call hooking mechanism. More details about the monitoring
task are provided in the next section.

System call tracer. The core of the detector is represented by the System
Call Tracer component. Its goal is to intercept the operations performed by the
OS, in terms of system call type, parameters and return values. All these infor-
mation will be used by the Policy Matcher, to verify the right permissions on a
certain resources on behalf of the process. There are two main requirements for
this component: (R1) The interception mechanism must provide a trusted path
between the invocation of the system call and its own termination. In particular
the system needs to provide a secure hooking mechanism for intercepting the in-
vocation and termination of OS operation. (R2) The overhead of the interception
mechanism must be kept as low as possible.

In order to retrieve all system call information, we need to monitor the invoca-
tion of the operation along with its termination. Whenever a system call is issued
by a process, a sysenter instruction is invoked. The sysenter instruction refers
to the SYSENTER EIP MSR, that contains the address of the system call handler.
Instead of relying on breakpoints offered by our framework, we directly overwrite
the SYSENTER EIP MSR so that it points to a vmcall instruction. By doing so,
the hypervisor intercepts every executed system call and notifies the event to the
detector, that accurately parse the parameters according to their type. Note that
the hypervisor has the ability to intercept every attempt that the guest makes
to read or write such MSR. As we described in section 2.2, indeed, the hyper-
visor can configure vm exit control fields so that an access to a defined MSR
triggers an exit. By doing so for the SYSENTER EIP MSR, our hypervisor is able
to efficiently protect the system call interception mechanism (requirement R1),
both from unwanted reads and write operations. Note that there are other ways
to intercept system calls, e.g., the transparent breakpoint-based event originally
offered by the framework (see section 3.2.2). However, given our ability to easily
mask the modifications to MSRs, we decided to relax a little the “non modifica-
tion” standard of the framework and adopt the solution we just illustrated, that
is more efficient for our needs.

Before passing the information to the Policy Matcher, the tracer also needs to
check whether the operation is successful or not and to collect its return value. For
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this purpose, the detector is able to intercept a sysexit instruction by replacing
it with a vmcall. Any attempt to re-write the VMX instruction is prevented by
the hypervisor through a memory page protection mechanism (requirement R1).
Once again, this could have been implemented through transparent breakpoints
offered by our framework. However, write protecting that page is extremely
more efficient than removing its execution permissions (as done in transparent
breakpoints).

To verify the trusted path of the system call, our detector also implements a
simple automaton that checks the correctness of the system call execution flow.
Every time a sysenter is intercepted an opening bracket “(” transition is trig-
gered to indicate which system call was invoked. Every time a sysexit is in-
tercepted, the hypervisor verifies that the event was expected, given the invoked
system call. It performs this step repeatedly until it sees the subsequent “)”, cor-
responding to the end of the system call request. Any unknown state is reported
as a system anomaly. If the operation succeeded, the System Call Tracer invokes
the Policy Matcher component and provides all the information on the system
call type, parameters, and return value.

Since the hypervisor is intercepting a high number of system calls, the hook-
ing mechanism is a critical component from a performance point of view. Con-
sequently, to improve performances, we devise two modifications to our original
implementation. First, the system allocates a protected memory page that con-
tains a short control code and some data about the monitored system calls—such
as the system call types and the memory handler code address. Based on the
system call type, the code decides whether to invoke an hypercall to switch to
monitor mode or to leave the control-flow to the default system call handler.
By using this technique we are able to exclude the non-monitored system calls
and reduce the overhead of the whole hypervisor system (requirement R2). More
details about performance evaluation are reported in the section 4.5.

Another relevant source of overhead is related to possible multiple repetitions
of the same system call from the same process. For example, during a file copy
operation, the same read and write operations are repeated multiple times, ac-
cording to the size of disk blocks and of copied file. Since there is no reason to
check the permissions for each operation, our system is designed to verify only the
first occurrence of the operation and run other operations natively. The overhead
caused by the repetition of these operations is thus avoided.

This is implemented by introducing a small cache that contains an checksum
based on the system call number, its parameters, and the value of the CR3 register
of the process who is performing the operation. Every time the system discovers
a new operation, we insert it into the cache and when the operation is not likely
to be repeated (e.g., the corresponding process terminates, or the file is closed),
we flush the cache entry related to that operation. In this way we only check the
first operation and we skip possible repetitions (requirement R2). We report a
measurement of the effectiveness of our cache in section 4.5.
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Process revealer. The goal of this component is twofold: First, it extracts and
provides the name of the process that is performing the actual operation (i.e., a
system call) by leveraging introspection functions of the framework (section 3.2.3)
and, second, it caches these information to reduce the system overhead. The
component keeps a cache that allows to look up the name of the process given
a certain CR3 value. The cache is updated every time a process is created or
destroyed, by properly intercepting and analyzing process-related system calls.

Policy checker. The goal of this component is to check AccessMiner policies
and generate an alert in case some of them are violated.

We recognize two main phases for the Policies Checker task: Initialization and
Detection phase. The initialization phase is responsible to create the memory
structures that will be used for the detection phase. In particular, to check the
filesystem and registry policies, we adopt an hash table memory structure where
the name of each resource is used as key and the name of process with its own
permissions on that resource is stored as value. During the initialization phase,
the detector receives the signatures using the ad-hoc network communication
protocol we briefly mentioned above. Then, whenever a signature is loaded,
the full-pathname of the corresponding resource is extracted and inserted in the
memory structure as a key of the hash table. The list of the processes that can
get access to the resource along with their own access permission are inserted as
elements of such a key.

Another important memory structures used by the policy matcher is the
file/registry handles structure. Since most of the filesystem and registry sys-
tem calls operate on handles, while our policy system works with full-pathname
resources, the system needs to keep the association between an handle number
and the resource full pathname. For this reason, we use a dynamic memory struc-
ture that tracks this association. During the monitoring of the system, every time
a resource is created or opened, the system retrieves the handle associated to the
resource full pathname and it registers it in the structure. Afterwards, when a
system call operates on the same handle, the corresponding object is retrieved
from the handle structure. Every time an handle is closed, the system removes it
from the handles memory structure.

To protect the policy information loaded during the initialization phase, the
network driver that receives commands is only enabled when the hypervisor is
in Management mode—in our prototype, this is triggered by using a special
keystroke sequence. On the other hand, to protect the policies from network
attacks, a signature scheme between the hypervisor and the management con-
sole is provided. In this way, we can assure that no one is able to tamper the
configuration information of the detector, according to our thread model.

During the detection phase, the System Call Tracer invokes the Policy Checker
with the relevant system call information. At this point, the Policy Checker, by
using the resources full-pathname as a key of the hash table, retrieves the list
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of the processes along their permissions. It also queries the process Revealer
component in order to retrieve the processes name that acts as a subject of the
operation. Once all the information are obtained, it scans the list of the processes
to search the process name. If the process is not allowed to perform the operation,
the Policy Checker raise an alert and blocks the operation. Otherwise, it permits
the operation and then returns to non-root mode.

4.4 Detection results

We report the evaluation of the effectiveness of using AccessMiner access activity
models to detect malware, conducted on the same machines that were used for the
collection. Each machine in turn was protected with the model built with the data
gathered from the other 9 machines, and then tested with slightly less than 8,000
malware samples. Since the detection mechanism of AccessMiner has not changed
in our hypervisor based implementation, the detection results are unchanged with
respect to the original implementation and evaluation. Nonetheless, we report
them hereby for completeness.

File system access activity model. On average, the file system access ac-
tivity model contained about 100 labels with tokens that restrict read access to
about 70 directories, write access to about 80 directories, and execute access to
about 30 directories.

A first round of experiments with this model reported a very good detection
rate, higher than 90% but with an annoying false positive (FP) rate of 14.8%.
Different experiments led to the observation that using a write-only detection
approach greatly reduced the FP rate (4%) without impacting too much on the
detection rate (89.5%). Further investigations resulted in the discovery that the
remaining FPs were to be ascribed to small errors in the model, and to software
updates, during which an application that was never observed to write-access
its own directory suddenly tried to, due to its update process. To prevent this
issue, we now automatically give write permission to each application on their
own directories. Once corrected, the new model allowed us to obtain a 0% FP
rate.

Registry access activity model. In our experiments, the registry access ac-
tivity model contained about 3,000 labels, significantly more than the file-system
model. In particular, the labels contained tokens that restrict read access to
about 1,600 keys and write access to about 2,800 keys (execute is not defined for
registry keys).

This model on its own gets worse result than the file system model: 56%
detection rate with a 6.6% FP rate. Slightly loosening the model allowed to
obtain a 0% FP rate, at the price of a marginally lower detection rate of 48.6%. In
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particular, all the false positives of the registry model were due to write accesses to
a particular registry sub-tree (HKEY USERS\Software\Microsoft), so we allowed
write access to this sub-tree and got the results reported above. Despite this
being an important part of the registry, the model does not lose much efficacy.
Furthermore, as we will see, the file system model alone is responsible for the
most part of the detection and, thus, this loosening does not affect the detection
of particular kinds of malware. Finally, note that, given enough time for the
training, the number of FPs could be reduced even without allowing write access
to this part of the registry.

Full access activity model. For the final experiment, we combined those
improved file system and registry models that yielded zero false positives. The
combined detection rate improves compared to the file system model alone, but
only slightly (between 1% and 2% for all of the ten runs). The average detection
improved from 89.5% to 91% (of course, with no false positives).

4.4.1 Discussion

When focusing on write operations only, the access activity model achieves a good
detection rate (more than 90%) with a very low false positive rate. The false pos-
itive rate even drops to zero with minor manual adjustments that compensate
for deficiencies in the training data, while still retaining its detection capabili-
ties. This suggests that a system-centric approach is suitable for distinguishing
between benign and malicious activity, and it handles well even applications not
seen previously. This is because most benign applications are written to be good
operating system “citizens” that access and manage resources (files and registry
entries) in the way that they are supposed to.

Malicious programs frequently violate good behavior, often because their goals
inevitably necessitate tampering with system binaries, application programs, and
registry settings. Of course, we cannot expect to detect all possible types of ma-
licious activity. In particular, our detection approach will fail to identify malware
programs that ignore other applications and the OS (e.g., the malware does not
attempt to hide its presence or to gain control of the OS) and that carry out
malicious operations only over the network. For these types of malicious code, it
will be necessary to include also network-related policies.

4.5 Performance results

In this section we report a set of micro and macro benchmarks we used to demon-
strate the efficiency of our system. In our experiments we run the Passmark
Performance Test suite [120] in four different test environments: on a physical
machine (PM), inside a guest VMware virtual machine (VM), on physical machine
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Figure 4.2: Memory Read Operation. Figure 4.3: Memory Write Operation.

Figure 4.4: Disk Read Operation. Figure 4.5: Disk Write Operation.

with AccessMiner (AM), and on physical machine running the Hypersight real-
time rootkit detector (RTD) [100]. Hypersight is a hardware-supported virtual
machine monitor that starts at boot time and intercepts several types of suspi-
cious actions applied to critical memory structures such as attempts to modify
page tables, read-only kernel modules, and GDT and IDT tables. All the experi-
ments are performed on an Intel Core i7 2.67 GHz with 3 GB of memory running
Windows XP (32-bit).

4.5.1 Macro-benchmark

We measured and compared the overhead introduced by AccessMiner on different
workloads by using four of the PassMark performance tests: read and write mem-
ory operations and sequential disk read and write operations. To perform these
tests, we loaded AccessMiner with 3824 policy rules: 173 related to the filesystem
and 3651 related to the Windows registry.

The final values were obtained by taking the average of ten repetitions for
each benchmark. Figure 4.2 and Figure 4.3 show the results of the memory tests.
In these cases, we used the system to perform a sequential read or write operation
of 1GB of memory with a block size ranging from 1024 bytes up to 512 MB. As
we can see in the graph, the higher overhead is encountered in VMware, mainly
due to its memory virtualization.
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Figure 4.6: Cache/NoCache Disk
Read Operation.

Figure 4.7: Cache/NoCache Disk
Write Operation.

Memory Operations PM AM VM RTD

Read (ms) 209.8916 209.9269 277.2247 220.0006
Write (ms) 205.5485 205.1042 271.5995 212.1548

Overhead Read NA 100.0 % 132.1 % 104.8 %
Overhead Write NA 99.9 % 132.1 % 103.2 %

Table 4.1: Overhead of Memory Operations.

More interesting performance results are reported in Figure 4.4 and Figure 4.5.
For this test, we performed sequential read and write disk operations for 1 minute.
We use the NTFS filesystem with a block size of 8192 bytes. As we can see
in the graphs, the overhead of our system is similar to the one observed in a
VMware virtual machine, when dealing with write operations. Read operations
in VMware are much faster than writes, because of aggressive caching techniques
that it adopts for its virtual disks. Hypersight overhead is the same of the physical
machine, since it does not intercept any operation on the disk. The overhead for
our system is due to the high number of filesystem and registry system calls
performed by the benchmark program. However, in these scenarios with multiple
repetitive operations our caching mechanism is able to reduce the overhead of
almost 80%, as reported in Figure 4.6 and Figure 4.7.

During the PassMark disk test we counted 11.000 NtRead/NtWrite system
calls related to the filesystem operations and other 5430 system calls related to
the registry operations. The impact of the disk operation was largely covered by
our caching system, leaving the registry responsible for most of the overhead.

In table 4.1 we report the overhead of memory operations for the four environ-
ments test: PM, AM, VM, and RTD system. In table 4.2 we report the overhead
of the disk operations.

To conclude the macro benchmarks, we also performed a worst-case experi-
ment, in which we measured the overhead introduced by AccessMiner during a
source code compilation routine. The target of the compilation was a middle-
sized C program, composed of almost 100,000 lines of code. Results of this last
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Disk Operations PM AM VM RTD

Read (msec.) 0.2070 1.3470 0.2460 0.2240
Write (msec.) 0.1580 0.8900 0.7590 0.1640

Overhead Read NA 650.7% 118.8% 108.2%
Overhead Write NA 563.3 % 480.4 % 103.80 %

Table 4.2: Overhead of Disk Operations.

Figure 4.8: GCC evaluation.

benchmark are reported in Figure 4.8. In this case, since the I/O operations were
spread on hundreds of different files, our caching mechanism was less effective in
mitigating the disk overhead. This resulted in an average AccessMiner overhead,
with respect to the physical machine baseline, of around 2.5x.

To conclude, the performances of AccessMiner greatly depend on the type
of application. However, the system normally introduce an overhead that is
comparable with the one observed in a traditional virtual machine environment.

4.5.2 Micro-benchmarks

To have a more fine-grained view of the delay introduced by our system, we
measured the overhead introduced by triggering a system call on a particular
resource. We started by measuring the time needed to perform a context switch
between a VM exit and a VM entry (without checking any policy), taking an
average over 20 repetitions. The operation took 1216 clock cycles, corresponding
to around 0.45 microseconds. The second operation that we measured was the
entire syscall monitoring mechanism. In this case, the time needed to intercept a
single system call is, in average, 1,241,739 clock cycles, or about 0.47ms. These
results show that most of the overhead introduced by our system is due to the
policy validation mechanism, while the context switch along with the monitoring
mechanism do not impact the system in a relevant way.
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5
Automatically finding vulnerabilities in OS X

kernel extensions

K
ernel security is of vital importance for a system. A vulnerability, in any
of its parts, may compromise the security model of the whole system.
Unprivileged users that find such vulnerabilities can easily crash the at-

tacked system, or obtain administration privileges. Unfortunately, kernels are an
evermore attractive target for attackers, and the number of kernel vulnerabilities
is rising at an alarming rate [95]. Looking for vulnerabilities in kernel-level code
is a daunting task, because of its many intricacies. Indeed, modern kernels are
extremely complex and have many subsystems, possibly developed by third par-
ties. Often, such components are not as secure as the kernel, because of the lack
of testing, and their typical closed-source nature [96, 97, 98, 99]. Furthermore,
kernels have countless entry points for user data. System calls, file systems, and
network connections, among others, allow user-fed data to reach important code
paths in the kernel. If a bug is found in such paths, it can lead to vulnerabilities
that compromise the entire system security.

In this chapter, we present the design and implementation of LynxFuzzer,
a framework to automatically find vulnerabilities in kernel extensions (kexts),
i.e., dynamically loadable components of the Mac OS X kernel. Kexts are built
adhering to the IOKit framework [6], the official toolkit for creating OS X kernel
extensions (also used in the iOS environment).

As its name suggests, LynxFuzzer is based on fuzzing, a technique that is
widely adopted for finding security vulnerabilities in software, but seldom applied
to the testing of kernel components [58]. We briefly recall that fuzzing consists
in applying random mutations to well-formed inputs of a program, and observing
the resulting values. There are three different approaches to fuzzing: whitebox
fuzzing [44], when the source code and other information are available, blackbox
fuzzing [86, 87], when the target is fuzzed in a completely blind fashion, and hybrid
fuzzing [49, 68], that leverages a combination of dynamic and static analyses, to
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fuzz more “smartly” than pure blackbox approaches.
This last one is the approach we are interested in, because the IOKit frame-

work requires kernel extensions to specify strict constraints on the input values
that can be received from user-space [6, 116], thus making blackbox approaches
unfeasible: most inputs would be discarded. Thus, LynxFuzzer uses a hybrid
fuzzing approach and adopts dynamic test-case generation. This means that it
automatically extracts information from the target extensions and uses them to
dynamically adapt its input generation techniques. More precisely, we imple-
mented three different fuzzing engines inside LynxFuzzer: a simple generation
engine that produces pseudo-random inputs that only respect kext-defined con-
straints, a mutation engine that builds input data from previously sniffed valid
inputs, and an evolution-based engine that leverages evolutionary algorithms [7]
and dynamic kernel-level code-coverage analysis.

The implementation of such a strategy posed some challenges, since extract-
ing information from kernel-level components without modifying the components
themselves is, practically speaking, not feasible. On the other hand, any kernel
code alteration could void testing results. To overcome this problem, we included
a hypervisor component inside LynxFuzzer, and use it to inspect a running OS
X kernel and intercept any invocation of its extensions, in a completely trans-
parent fashion. We decided to build LynxFuzzer hypervisor component on top
of the framework we illustrated in chapter 3 mainly because of the many diffi-
culties of running Mac OS X inside commonly available virtualization software.
OS X, indeed, proved to be quite “stubborn” towards virtualization. For exam-
ple, its installation under an extremely widespread virtualization environment,
i.e., VMware [136], requires both a customized OS X disk image and an obscure
patch to VMware binaries. On the other hand, we did not experience any particu-
lar problem in dynamically loading our hypervisor framework and taking control
of an OS X system, proving once again its usefulness. Furthermore, Apple is
well-known for its custom hardware (e.g., the Magic Mouse), which is not often
emulated by common hypervisors. This shortcoming would prevent LynxFuzzer
from testing some of the drivers in OS X. As we illustrated in chapter 3, our
framework does not suffer from this problem. Finally, consider how important
transparency is for a delicate activity such as the fuzzing of kernel components.
We have not experienced this in our experiments, but the OS X kernel could
decide to alter its own behavior when it detects the presence of a virtualization
environment, maybe refusing to load some components. This would prevent us
from fuzzing those components or it may invalidate our results, in case some
components behave differently from how they would on real hardware. Using our
hypervisor analysis framework, we can ensure as much transparency as possible,
eliminating such side effects.

LynxFuzzer has been implemented and tested on Mac OS X 10.8.2 (Mountain
Lion), and provided unexpected results, thus proving its usefulness and effective-
ness. More precisely, we individuated bugs in 6 of the 17 kexts we analyzed. Once
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exploited, such bugs can lead unprivileged users to easily crash the whole system
or may also allow to mount privilege-escalation attacks [103].

Finally, some last words on the choice of OS X as a test-bed. First, Win-
dows and Linux user-to-kernel interfaces have been deeply analyzed and many
tools exist for their testing and verification. On the other hand, user-to-kernel
communication approach used by kernel extensions, named DeviceInterface [6], is
relatively young and has not been extensively analyzed before. Furthermore, the
number of OS X adoptions is growing at a continuously rising pace and this will
soon attract the attention of more and more cyber-criminals. Finally, note that
most of the components of LynxFuzzer can be almost effortlessly adapted to work
with iOS kexts, thus opening a whole new scenario of testing on mobile devices.
The only component that should be rewritten from scratch is the hypervisor, that
could no longer be built on top of our framework, but would require an ARM
based hypervisor. As a future development of LynxFuzzer, we plan to implement
such component and use it to test iOS kernel extensions as well.

5.1 Preliminary notions

In this section we will give an overview of the main technologies that are ba-
sic for the understanding of LynxFuzzer: evolutionary algorithms and the IOKit
framework.

5.1.1 Evolutionary algorithms

One of the fuzzing engines that we implemented in LynxFuzzer is based on evo-
lutionary algorithms [7]. Such algorithms are inspired to the natural selection
process of biological evolution. A common evolutionary algorithm starts from
an initial population, a set of elements that are gradually discarded and merged,
in an effort to keep only the features of its best elements. To determine which
elements are the best, and will contribute to the next generation, the algorithm
uses a fitness function, that reflects the survival probability of an element. Then,
the algorithm iteratively selects a number of elements, picking with higher prob-
ability elements with a better fitness value. Selected elements are then merged
together to build new ones, that share features of both their parents, during the
crossing-over phase. There are many cross-over techniques, but they typically
consists in splitting parents in two and concatenate one portion of each one to
create the child element. Furthermore, elements can undergo mutations, that
randomly alter their features.

Ideally, each iteration gets a step closer to an optimal solution for the original
problem, but there is no a priori guarantee that the algorithm will eventually
find such solution.
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const IOExternalMethodDispatch

UserClient::sMethods[kNumberOfMethods] = {

{

/* kMyScalarIStructIMethod */

(IOExternalMethodAction) &UserClient::sScalarIStructI,

/* One scalar input value */

1,

/* The size of the input struct */

sizeof(MySampleStruct),

/* No scalar output values */

0,

/* No struct output value */

0

},

/* ... */

}

Figure 5.1: A sample dispatch table.

5.1.2 IOKit fundamentals

Mac OS X is an operating system developed by Apple and currently adopted on
Apple computers [116]. While most of the concepts behind OS X are shared with
other operating systems, some are less well-known and need explanation before
proceeding further.

OS X kernel is called XNU. It is based mainly on Mach [1], FreeBSD [132]
and previous Apple products and prototypes. Despite the fact that Mach uses a
microkernel architecture, XNU is a macrokernel and it is possible to extend its
original functionalities by dynamically loading new components into the kernel.

Among its many components, XNU contains one that is particularly relevant
for our work: the IOKit. IOKit is a “a collection of system frameworks, libraries,
tools, and other resources for creating device drivers in OS X” [6]. It offers an
object oriented environment (restricted C++) and a number of abstractions that
make the (commonly painful) task of writing kernel components much more easy
and “user space friendly”. The IOKit framework contains many abstractions and
components, and we describe those relevant to our work in the following of this
section.

Kernel extension. A device driver produced through the IOKit framework is
called “Kernel Extension” or, for short, kext [116]. Since the terms are often
synonymous, we will interchangeably use “kext”, “module” and “driver” to refer
to a dynamically loadable component of the XNU kernel.

Kexts are bundles containing a number of resources needed to properly vali-
date and load a module into the kernel such as the Info.plist file, which contains
many fundamental fields such as the CFBundleExecutable, that points to the
driver executable, and the CFBundleIdentifier, which contains the driver unique
identifier, version number, and the set of libraries on which the driver depends.
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Figure 5.2: Invoking a kext’s method.

User to kernel communication. A fundamental component of every OS is
the communication between user- and kernel-space components. Windows and
Linux offer such functionality through system calls and special virtual files (e.g.,
/dev/urandom). IOKit supports both techniques, but also adds a novel and much
more complex mechanism, named DeviceInterface [70, 6].

To leverage this mechanism, kexts define a set of methods that can be invoked
by user-space programs. Such methods have limitations in terms of number and
type of data that can be received by and returned to the caller. The list of these
methods and constraints on their parameters are stored into a structure of utmost
importance (both for IOKit and for our fuzzing framework): the dispatch table.

As can be seen in the Figure 5.1, the dispatch table is an array of structures,
each one containing a function pointer, allowed input and output values, as well
as the number and size of the values that can be accepted (or that are returned)
by the method. If the size of an input structure is not known a priori, the check
can be demanded to the receiving method, by specifying a size of 0xffffffff in
the table.

It is possible to have, for any driver, more than one dispatch table. IOKit
allows kexts to offer multiple interfaces to user-space programs at the same time.
Each kext must also define one custom subclass of UserClient for each inter-
face. Instances of these subclasses are then loaded in the kernel memory along
with the kext (Figure 5.2). Every UserClient object contains the dispatch table
corresponding to the interface it offers.

User-space programs can invoke kexts methods via IoConnectCallMethod(),
if the methods are specified in one of the kext dispatch tables. To be able to
do so, however, the program must first find the specific instance it wants to
talk to. To illustrate how this happens, we must first introduce one more IOKit
abstraction, the IOService. Each IOKit device driver is an object that inherits
from the IOService class and a kext may contain different IOService objects at the
same time. Let us consider an example. There are typically many USB devices
connected to a computer and each one needs its own driver. Such drivers are
all contained in the IOUSBFamily kext, and each of them is a specific IOService
subclass (service, for short) for a device. When an user-space process wants
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kern_return_t IOConnectCallMethod(

mach_port_t connection,

uint32_t selector,

const uint64_t *input,

uint32_t inputCnt,

const void *inputStruct,

size_t inputStructCnt,

uint64_t *output,

uint32_t *outputCnt,

void *outputStruct,

size_t *outputStructCntP

);

IOReturn IOUserClient::externalMethod {

uint_32t selector,

IOExternalMethodArguments *args,

IOExternalMethodDispath *dispatch,

OSObject *target,

void *reference

}

Figure 5.3: Prototype of IoConnectCallMethod() and externalMethod().

to communicate with one device, as we mentioned above, it establish a mach
connection [70] to IOKit and searches for the specific service associated to the
device. This process is called Device Matching [6].

Once the communication channel is established and the service is found, the
user-space program uses IoConnectCallMethod() (whose prototype is reported
in Figure 5.3) to invoke the desired method. This transfers the control to the
IOKit framework that, before actually executing the target method, performs a
set of operations. At first, it retrieves the dispatch table entry from the User-
Client object. The entry is then passed to the externalMethod() function (also
reported in Figure 5.3), along with other parameters that allow to perform the
actual invocation of the kext method. This, however, happens only if the param-
eters correspond to what is specified by the dispatch table entry, otherwise the
invocation is blocked.

The whole IOKit input control mechanism offers an additional protection
layer, with respect to common mechanisms such as ioctl, because checks are
performed before parameters are even moved from user- to kernel-space. Obvi-
ously, all these constraints make the fuzzing process quite complex. It is almost
useless to just fuzz functions of a kext with completely random parameter sizes,
as most invocations would be discarded by checks performed by IOKit. As we
will see in the next section, one of the key aspects of our fuzzer is its ability
automatically extract constraints on parameters from the target and dynamically
adapt its fuzzing techniques to get better efficiency.
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Figure 5.4: Architecture of LynxFuzzer and interactions between its components (gray
areas).

5.2 LynxFuzzer

This section describes in detail the design and implementation of LynxFuzzer, the
infrastructure we have devised to perform automatic fuzzing of Mac OS X kernel
extensions. The purpose of our fuzzer is to trigger bugs in kext code that can be
reached by user-space programs, by means of the IOKit framework. Of course,
there may be other bugs that the execution flow cannot reach anyhow from user-
space, but we give much more importance to the first category, as it poses security
threats. A bug triggerable by user-space, indeed, may allow un-privileged users
to crash the system, or even obtain arbitrary kernel-level code execution, which
typically leads to privilege escalation attacks [103]. Furthermore, we decided
to focus our efforts on the DeviceInterface boundary-crossing mechanism, since
it became the de facto user-to-kernel communication standard for OS X kernel
extensions.

UserClient::sScalarIStructI(

uint64_t *ScalarI,

uint32_t inputCnt,

MySampleStruct *StructI,

size_t inputStructCnt

);

Figure 5.5: Sample kext method.

As it should be clear from what we described in section 5.1.2, there are many
constraints that must be considered when invoking a kext method and such con-
straints are specific to each kext. For example, consider the method in Figure 5.5
(whose constraints are declared in the dispatch table entry in Figure 5.1). With-
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out knowledge of its dispatch table entry, the fuzzing space of this method input
parameters has a size of 16 ∗ 264: 16 possible values for the scalar vector1 and 264

for the input structure size only, without considering its contents. On the other
hand, knowing constraints contained in the dispatch table allows us to reduce
the possible fuzzing space to what is actually accepted by the kext, thus gain-
ing much more efficiency. Thus, we designed LynxFuzzer so that it can extract
these information in a completely automatic fashion and fuzz them autonomously.
Furthermore, the automation of our fuzzing infrastructure is not limited to this.
Indeed, we are able to extract valid input vectors used in non-artificial interac-
tions between user- and kernel-level components. Such inputs are used as a basis
to elaborate new inputs aimed at improving the fuzzing strategy.

An overview of LynxFuzzer architecture is depicted in Figure 5.4. Our frame-
work has two main components: one that resides in user-space and consists of
4 sub-components, and one built on top of our hypervisor analysis framework.
Figure 5.4 also reports the main interactions between LynxFuzzer internal com-
ponents. The tracer interacts with the hypervisor to identify where the dispatch
tables of the target are (1, 2). Once discovered, the hypervisor retrieves them
from the kernel memory and sends them back to the tracer that stores them
into the data manager for later use (2, 3). The sniffer uses such information to
intercept non-artificial IoConnectCall() invocations and gather a set of valid
inputs (4, 5). Finally, the fuzzer components starts invoking the target methods
with custom parameters (6), waiting for an eventual panic (7). Depending on the
selected fuzzing engine, the fuzzer may use valid inputs precedently stored in the
data manager to generate new inputs or leverage coverage information (8).

As we mentioned at the beginning of this chapter, the choice of leveraging our
hardware-assisted analysis framework was dictated, among other things, by the
principle that a fuzzing infrastructure should induce as less changes as possible
in its target, i.e., the OS X kernel and its extensions. Any change in the fuzzing
target, indeed, could lead to errors and side-effects wrongly identified as produced
by the fuzzing strategy (i.e., false positives). For this reason, every functionality
that would normally require an interference with the kernel (e.g., intercepting a
kernel function) has been implemented at the hypervisor level. Components that
do not require to directly interact with the kernel are implemented in user-space
and communicate with the hypervisor by means of hypercalls.

5.2.1 Tracer

The tracer is the first component of LynxFuzzer to be executed, as its task is
finding out what to fuzz, i.e., it must identify which of the target methods can
be invoked. Intuitively, recalling what we illustrated in section 5.1.2, this infor-
mation is contained into the dispatch tables of the target kext. Being able to

1This is a limit imposed by IOKit.
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locate the dispatch table of a kext, however, is not easy, since IOKit uses a num-
ber of abstraction layers to hide such information to user-space programs. We
devised a solution by observing that, whenever an user-space program invokes
IoConnectCallMethod(), the IOKit will invoke its externalMethod() function
(as we illustrated in section 5.1.2). Thus, we proceed as follows. LynxFuzzer
hypervisor sets a breakpoint on the externalMethod() function and intercepts
whenever it is executed (see section 5.2.4 for details on how we implemented
breakpoints from the hypervisor). Once the trap is set, the tracer issues a re-
quest to the target kext with a selector value of 0 and a set of parameters that
are likely to be discarded by IOKit checks (we do not want to accidentally trigger
a crash during the first phases). When the hypervisor intercepts the resulting
externalMethod() execution, it extracts the base of the dispatch table, uses it
to dump the whole table as described above, and eventually returns it to the
tracer component. Finally, the tracer stores the extracted dispatch table into the
data manager, so that other components can leverage this information for their
operations.

Note that the size of the dispatch table is not known a priori, nor is contained
in the parameters of the trapped function. To solve this problem, LynxFuzzer
leverages the structured nature of such tables to infer how many entries it has
and dump it. Indeed, each table entry is formed by: a function pointer, which
must reside in the memory area of the target, and 4 consecutive integers, two of
which must fall in the [0:16) range. Although not provably sound, such heuristics
have indeed shown to be an effective and reliable technique to extract dispatch
tables during our experiments.

Many heuristics can be used by the hypervisor to understand if an intercepted
request is really the artificial one issued by the tracer. At first, the hypervisor
checks if the dispatch table entry passed as a parameter lies in the memory range
of the target kext, and if the selector value is 0. Furthermore, it is possible to spe-
cially craft the parameters of the artificial request to include an a priori specific
pattern that the hypervisor can easily recognize. As for the previous heuristic,
during our experiments LynxFuzzer correctly identified the artificial request for
every target.

5.2.2 Sniffer

Many fuzzing techniques use a knowledge base, i.e., a set of valid input values, to
build new inputs that are more likely to trigger bugs than randomly-generated
ones. Simpler fuzzers, e.g., targeting pdf-viewers or protocols, commonly have a
non-negligible number of valid inputs at their disposal to use as a starting point.
Unfortunately, this is not our case, because we offer a generic framework to fuzz
potentially unknown kexts, so we need to create our own base of knowledge before
starting the fuzzing. For our strategies, the information gathered by the tracer are
not enough, even if they already allow to considerably reduce the fuzzing space.
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Indeed, beside the checks performed by IOKit, the kext itself could implement
constraints on input values. Thus, LynxFuzzer includes a sniffer component,
that is able to intercept real executions (i.e., not artificially triggered by our
framework) of the target methods and to extract their parameters. To do so, we
once again leverage LynxFuzzer hypervisor component that is able to transparently
and seamlessly intercept whenever an interesting function is executed, and dump
its parameters, by inspecting the target kext memory without altering it anyhow.

Intuitively, since the tracer has already retrieved the dispatch table, the sniffer
could just ask to the hypervisor to place a breakpoint on every function contained
in the table. However, such a solution would not be efficient. Thus, the hypervi-
sor intercepts the externalMethod() function, whose parameters contain enough
information to retrieve valid inputs, as can be seen in Figure 5.3. Indeed, the hy-
pervisor uses the dispatch argument to discriminate which kext is the target of
the intercepted invocation and selector to understand the method being called.
If these parameters indicate that an intercepted invocation is not relevant (i.e.,
the callee is not the target of the fuzzing), then the hypervisor just ignores it.
Otherwise, valid inputs are extracted from IOExternalMethodArguments struc-
ture containing the actual parameters that will be passed to the callee. Such
data structure contains fields that allow to precisely infer the number and size of
input parameters, so no heuristics are needed to read and send them back to the
user-space sniffer component, which in turn stores them into the data manager.

The sniffer is almost essential when the check on parameters size is not per-
formed by IOKit but delegated to the kext code (as happens when a dispatch
table entry specifies a 0xffffffff size for an input or output structure). In such
a situation, the fuzzer does not even have minimum information on constraints
commonly extracted by the tracer. Thus, having a set of valid inputs where to
start from is of paramount importance, because otherwise, the fuzzing would be
completely blind.

Please note that if LynxFuzzer is used to fuzz kexts for older, 32 bit, OS
X version, then understanding which is the callee kext when intercepting an
externalMethod() is not so straightforward, because the address of the dispatch
table is not passed to this function. However, it is possible to slightly adapt our 64
bit strategy by moving the breakpoint after the body of the externalMethod()

function retrieved the dispatch table and extract the address of the table. With
this simple workaround, our sniffer component can deal also with older OS X
versions.

To make the explanation clearer, previous paragraphs described the operation
of both the tracer and the sniffer as if they were used to deal with a single
kext. However, we remark that LynxFuzzer is actually capable of automatically
identifying every kext loaded on an OS X system and then gather valid input
values for all of them.
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5.2.3 Fuzzer
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Figure 5.6: Fuzzer sub-components.

The fuzzer is the main component of LynxFuzzer. After the tracer and the
sniffer obtained all the ancillary information needed to properly fuzz one (or
more) kext, the fuzzer creates test cases (i.e., set of inputs) for the kext methods
and invoke them through the IOKit device interface. Figure 5.6 reports the inner
architecture of the component, that has three main parts: a request generator, a
set of fuzzing engines and a monitor.

The request generator is an extremely versatile component: it must operate
independently from the target kext and the selected fuzzing engine. In a typical
execution, it receives a test case from the engine, checks that it respects what
is specified in the dispatch table entry of the target method and properly crafts
the argument for an IoConnectCallMethod() that eventually executes the target
method in the kext.

If the test case does not cause a crash, the kext sends back an answer that is
received by the monitor. Depending on the received answer and on the engine
currently in use, the monitor may decide to alter the engine so that the next
test case will depend on the result of the previous one. As we will see later in
this section, both the mutation engine and the evolution engine leverage this
information.

LynxFuzzer, furthermore, implements the concept of session-based fuzzing: we
do not save just the request that triggers the bug, but we record every request
that we make from the beginning of the fuzzing session. This practice is common
when fuzzing stateful network protocols [10], but is also useful in our scenario.
There are indeed kexts that maintain a “state” that is changed by a number of
different fuzzing requests until an invalid state is reached and a bug is triggered.
For this reason, recording communication sessions, instead of single requests,
greatly improves the reproducibility of a bug, as also shown by our experiments
in section 5.3. To record communication sessions between the fuzzer and a tar-
get kext, every request is stored in the data manager. However, this may be
problematic as triggering a bug at kernel level usually corresponds to crashing
the target system, on which the data manager is running, with possible losses of
data. The simplest solution is to store the request before issuing it, to minimize

59



Chapter 5. Automatically finding vulnerabilities in OS X kernel extensions

the probability of losing it. Sometimes, however, it is possible that writes are not
flushed to the disk before the crash. To avoid this, the data manager relies on
databases, rather than files, that are much more resilient in dealing with crashes.
This solution proved to be successful: in our experiments we did not observe any
data loss. Should any be encountered, however, it is possible to implement a
small cache in the hypervisor component, to store latest requests. Indeed, the
hypervisor can survive even the worst crash of the guest and allow to safely dump
cached requests, if needed.

Finally, the fuzzing engine is responsible for the production of input values
(or input vectors) that will be used by the request generator. Details of the three
different engines that we implemented in LynxFuzzer are described in the following
sections.

Generation Engine (GE)

This is the simplest and quickest engine of the three. Its generation process may
be summed up as follows. At first, it builds data structures that can contain
the input for the target method. Then, it generates pseudo-random inputs and
fill the structure that are then sent to the target, invoking the method through
IoConnectCallMethod(). If the system does not crash, then the procedure begins
anew. This engine does not need the monitor as the generation is random and
does not take care of results of previous requests.

Please note that the generation engine is not completely random. Indeed,
inputs are forged on top of the constraints extracted by the tracer. So, even if
random, parameters that are generated by this engine are never discarded by
IOKit internal checks.

The main advantages of this engine, with respect to the other we implemented,
are its simplicity and low overhead.

Mutation Engine (ME)

This second fuzzing approach follows a principle that is the opposite of the pre-
vious one: every new input is generated from valid inputs collected by the sniffer
component. The fuzzing process is roughly made of the following steps. Valid
inputs that were previously gathered by the sniffer are mutated with different
functions. Then, request containing such forged inputs are sent to the target
method. If the system does not crash, the monitor checks the response of the
kext, possibly excluding values that caused the kext to return an error from next
mutations. This greatly increases the efficiency of the fuzzer, in the case of inputs
structures with a variable size, because it gradually eliminates those that are not
accepted because of checks performed in the code of the target method.

The set of mutation functions used by this engine includes: bit flipping, byte
flipping, byte swapping and size change. The last one can be applied only to
method whose dispatch table entry specifies a variable size.
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The main advantages of this engine are its precision and its ability to gradually
discard mutations that are rejected. Mutations, however, are random: the engine
does not try to make any inference from the response of the method, except
for discarding unaccepted values. Furthermore, the dependency on valid sniffed
inputs may be too restrictive, depending on the usage scenario. In some cases,
indeed, being able to collect a large base of valid inputs may take a long time.

Evolution Engine (EE)

The evolution engine tries to overcome the limitations of the previous ones. In
an effort to reduce the use of pseudo-randomness, it leverages concepts of evolu-
tionary algorithms to generate new inputs.

The hearth of any evolutionary algorithm is the fitness function, that depicts
the fittest elements that will contribute to build new generations. In LynxFuzzer,
we devised two different fitness functions: one that measures the code coverage
of an input vector and one that measures the distance of an input from an ideal
target vector. In the first case, we strive to create a set of input vectors that can
give us the best code-coverage rate possible. The second, on the other hand, is
useful when we want to individuate inputs similar to a given one (e.g., a vector
that is known to trigger a bug in the target).

Independently by the fitness function selected, the evolution engine operates as
follows. At first, it creates the initial population either from randomly-generated
input vectors or from data gathered by the sniffer component, and defines the
target vector (if any). For each vector in the current population it calculates the
fitness value. Then, according to the fitness value and function used, the engine
selects best candidates to contribute to the next generation (selection phase).
There may be corner cases in which the target driver imposes strict internal
checks on inputs, leading to a rapid degeneration of the population. To avoid
this situation, we create an “elite group” of valid inputs with an high fitness from
the initial population and propagate them through next populations. Couples of
selected vectors are picked and used to generate a new vector (crossing-over). The
“child” is generated by splitting the input vectors of both parents and randomly
concatenating one part from each of the two. Random mutations (as those defined
in the mutation engine) are applied to vectors generated by the previous step, to
modify the genetic makeup inherited by the parents (mutation phase). Finally,
the test cases in the new population are sent to the target. If needed, code
coverage values for the new input vectors are calculated. The process starts
again from the first step, by using the new population.

Code coverage based fitness. The first of the two fitness function that we
implemented in LynxFuzzer is based on measuring the code coverage that is ob-
tained by each single input vector. Dynamically measuring the code coverage of
software running in kernel-space can be a cumbersome task, especially when the
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1: a := ScalarI[0]

2: b := (byte *)StructI

3: c := new byte[100]

4: i := 0

5: if a > 100 goto 9

6: c[i] := b[i]

7: i := i + 1

8: if i <= a goto 6

9: d := ScalarI[1]

10: e := a - d

11: if e < 10 goto 14

14:...

15:...

16:...

12:...

13:...

17: return

False
True

True

False

TrueFalse

Figure 5.7: Example of weighted code coverage.

OS does not originally provide support for such analysis and, even if it did, one
could argue that the mechanism itself could change the behavior of the target,
thus invalidating the analysis. For this reason, such information are gathered by
the hypervisor component, as explained in section 5.2.4.

Information collected by the hypervisor allows the fuzzer to operate on two
dimensions: the set of distinct executed instructions and the number of times
each instruction was executed. To understand why both are useful, consider
the Control Flow Graph (CFG) [3] reported in Figure 5.7. Such CFG contains
the pseudo-code of a simple method that receives two integers (ScalarI[0] and
ScalarI[1]) and a structure (StructI) as parameters, and suffers from an off-by-
one vulnerability in the slightly darker basic block. Considering only the number
of executed instructions, this method would get a fitness value of 9, if a is less
or equal to 100. Otherwise, the value will be 11 or 12, according to d. In such
a scenario, input vectors that follow the first true branch would be more likely
selected, sacrificing the branch that leads to the vulnerability. To prevent this
situation, we decided to consider the second dimension too, and created a fitness
function that assigns a higher weight to instructions that are executed multiple
times.

Obviously, the “interesting” part of the code may also be under a branch that
is highly disadvantaged by using weighted code coverage. For this reason, we de-
cided to include both weighted and non-weighted fitness functions in LynxFuzzer,
and use them alternatively.

Distance based fitness. The second approach is much more traditional. We
assume to have an ideal input vector and the fitness function is based on calcu-
lating the distance between a generated vector and the target: the greater the
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distance, the lesser the fitness. To calculate the distance we consider each input
as a vector of bytes {b1, b2, ..., bn}, and we map it to a point B = (b1, b2, ..., bn)
in an n-dimensional space. Given V = (v1, v2, ..., vn), the point corresponding to
the ideal vector target, the fitness of B is calculated as the euclidean distance
between the two points.

We identified three different input vectors that are useful when used as a
target. The Farthest Vector Target, is a vector composed of all 0x00 or 0xff,
to make the fuzzer reach corner cases. The Middle Vector Target, composed by
portions of vectors of the initial population, tries to maximize the number of
generated input vectors that are not discarded by internal checks in the driver.
Finally, the Panic Vector Target is a vector that is known to cause a panic in the
target kext. This is particularly useful during debugging, where having multiple
inputs that trigger the same bug can greatly help the fix process.

5.2.4 Hypervisor component

When fuzzing, it is very important to avoid inadvertent modifications of the
target. Yet, as we saw, almost every component of LynxFuzzer needs to intercept
certain IOKit functions or to gather some data from kernel memory. To be able
to do this seamlessly, we decided once to leverage hardware-assisted virtualization
technology [92]. In particular, we built the hypervisor component of LynxFuzzer
on top of the dynamic analysis framework that we illustrated in chapter 3.

When loaded, the hypervisor first sets up EPT structures to create a one-to-
one mapping between guest and host physical addresses, as we do not expect the
guest system to try to attack us anyhow. Nonetheless, we write-protect internal
hypervisor structures and code, since side-effects triggered by a bug may endanger
the hypervisor integrity.

The main functionality that LynxFuzzer needs to implement at the hypervisor
level is kext code coverage analysis. All other tasks, e.g., breakpoints to intercept
kernel functions, are performed through the API of the framework.

Code coverage analysis. Performing code coverage analysis of a kernel com-
ponent is a non trivial task. Intel offers a technology that can be leveraged to this
purpose: Branch Trace Store (BTS) [56, 118]. BTS technology records, for each
taken branch, interrupt, or exception, the originating address (i.e., current eip)
and the target in a buffer inside the DS save area. When the buffer is full, an
interrupt is triggered. Unfortunately, however, when BTS is enabled, the CPU
enters a particular execution mode that automatically runs 25x to 30x slower than
normal [55]. Furthermore, Soffa et al. analyzed that the slowdown can reach 40x,
when BTS is used for branch coverage analysis [118]. This makes BTS ill-suited
for LynxFuzzer, as such slowdown would destroy its effectiveness.

A faster, hardware-assisted, solution consists in leveraging Last Branch Record
(LBR) [55]. LBR is similar to BTS in that it can be used to perform branch trac-
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ing. However, differently from the former technology, taken branches, interrupts,
and exceptions are stored onto the LBR stack, whose size depends on CPU model,
and ranges from 4 to 16 entries. Each entry contains the source and the desti-
nation address, thus these information can be used to calculate code coverage,
just like with BTS. The LBR stack is filled circularly, and there is no interrupt
mechanism to notify the analyzer that an overflow happened. This means that
the analyzer must continuously poll the LBR stack to gather useful informa-
tion. Even with very small sampling intervals, this approach cannot guarantee
fully precise results, and a trade off between precision and performances must
be found. Walcott et al. implemented THeME [139], a system that uses LBR
to calculate code coverage. In their experiments, they evaluated precision and
overhead of THeME with different sampling intervals. Precision is calculated as
the number of instructions that are observed with LBR sampling over the num-
ber of instructions that are really executed. With the smallest interval (500 CPU
cycles) THeME achieves an average 76% precision, with an extremely reasonable
overhead (i.e., less than 100%). With a bigger sampling interval (i.e., 50M CPU
cycles), the average precision lowers to 54% but THeME is faster (around 30%
overhead). Such numbers show that LBR is a good solution when approximate
code coverage information are acceptable but, unfortunately, this is not our case.

To overcome the problems of the aforementioned techniques, we devised a
more efficient solution, based on EPT technology, that was not originally analyzed
in Soffa et al.’s work [118]. Before starting to invoke kext methods, the fuzzer
component communicates to the hypervisor (via hypercall) the range of code
pages of the kext. The hypervisor removes the EXEC permission from the EPT
entries corresponding to received memory ranges. As soon as the kext tries to
execute code in such pages, it triggers an EPT violation and the hypervisor keeps
track of the instruction that caused it. To proceed, it restores EXEC permission
on the faulting page and configures the guest to perform a single-step. When
the hypervisor gets the control back, because of the resulting debug exception,
it removes the permission, so that the next instruction will violate again. Once
the fuzzed methods returns, the fuzzer sends another hypercall to disable the
tracing. The hypervisor stores collected information into a buffer in the fuzzer
address space so that it can be used by the user-space component to calculate
the code coverage corresponding to the invocation.

We evaluated the overhead of running the generation engine on each method
of 10 different kexts, with and without the code coverage analysis enabled, and
measured the slowdown. In particular, we first measured the number of requests
per second that each module is able to serve while not being analyzed, then we
collected the same measure while tracing, and compared the results. For the sake
of precision, measurements were repeated 10 times for each module and results
were averaged. The average overhead is 3.45x, with a best and worst case of,
respectively, 1.73x and 5.99x. Detailed results of this evaluation are reported in
Table 5.1. As we can see, we pay a high price for obtaining full precision without
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Kernel Module Rps w/o Tracing Rps w/ Tracing Overhead

AppleSMCLMU 668.28 385.90 1.73x
AppleMikeyDriver 517.54 283.28 1.83x
AppleHDAController 591.82 273.77 2.16x
IOHDAFamily 634.17 278.41 2.28x
AppleSMC 651.99 284.31 2.29x
IOSurface 434.84 112.44 3.87x
AppleHDA 635.39 164.20 3.87x
IOUSBFamily 204.89 42.76 4.79x
SimpleDriver 424.91 74.01 5.74x
IOHIDFamily 278.00 46.44 5.99x

Overall — — 3.45x

Table 5.1: Overhead of the code coverage analysis.

modifying the target, if compared to instrumentation [118] or THeME [139].
However, consider that the only approach that can potentially obtain the same
results of our technique is BTS. With an overhead of 40x [118], BTS is more than
one order of magnitude slower than our approach. Furthermore, consider that
BTS and LBR usually slow down the entire system on which the target runs,
while our approach is as precise as instrumentation, and only slows down the
target of the analysis (and whomever is interacting with the it at the same time).

5.3 Experimental evaluation

This section presents the result of the experiment we conducted to evaluate the
effectiveness of LynxFuzzer. To this purpose, we used the fuzzer to exercise a set of
17 different Kernel Extensions and found bugs in 6 of them2. More detailedly, 2 of
the 6 have already been patched in OS X 10.9 (Maverick) and have been assigned
the following CVE-ID by Apple: CVE-2013-5166 and CVE-2013-5192 [5]. The
remaining 4 are still unpatched and will be most likely addressed in the next
releases of OS X.

All the experiments were conducted on a Mac OS X 10.8.2 system (Mountain
Lion), installed on Apple hardware, equipped with an Intel i5 CPU and 12GB
of RAM. Thanks to the adoption of kernel-security measures in OS X, none of
the bugs we identified can be easily exploited to perform a privilege escalation
attack.

Unfortunately, we cannot yet disclose details of the bugs, if not that Apple
acknowledged all 6 of them and already fixed 2 in the to-be-released OS X 10.9

2Obviously, all the bugs were reported to Apple or the appropriate vendor.
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Kext
Code Coverage Perc.

Methods Estimation Full

IOUSBFamily 64.8% 61.1% 33.7%
IOHIDFamily 86.4% 69.9% 11.4%
SimpleDriver 96.6% 77.3% 34.3%
IOSurface 76.6% 58.8% 18.5%
AppleUSBHub 86.9% 54.5% 37.5%

Table 5.2: Coverage analysis results.

(Maverick). The remaining 4 will be addressed in next releases, and we were
requested to keep all of them confidential in the meantime.

A metric that is usually associated with efficiency of a fuzzer, is the code cov-
erage level. However, as also stated in [49], such metric may not be extremely
significant: a fuzzer could even reach 100% code coverage of the analyzed code,
but yet fail at finding a bug. Consider once again the example reported in Fig-
ure 5.7, where two input integers determine the flow of execution. If used as
an input source, the following set of values I = {(10, 3), (120, 100), (120, 115)},
respectively assigned to ScalarI[0] and ScalarI[1], would guarantee a code-
coverage of 100%, without ever triggering the off-by-one vulnerability. Nonethe-
less, since it is customary to report such information, we conducted an experiment
to calculate the code coverage level of LynxFuzzer.

Even if our hypervisor component can easily keep track of every instruction
that is executed in a given time-frame (e.g., during the fuzzing), giving a precise
measure of the coverage of a kext is quite challenging. The problem lies in under-
standing exactly how many instructions of a kext can be reached by user-space
programs when invoking methods exported in the dispatch table, to use them as
a baseline to estimate a percentage of the code coverage. The simplest solution
would be to statically count the instructions that constitute such methods. This
measure, however, would be imprecise, because it does not keep track of all the
ancillary functions that are invoked by exported methods. On the other hand,
considering the whole code of the kext as the maximum amount of coverable code
is imprecise as well, because it would mean to include all the methods that are
invoked at load-/unload-time or during the the Driver Matching phase, (i.e., all
the life-cycle methods [70]), thus leading to an underestimation of the obtained
coverage.

To overcome these limitations and give an estimation of the amount of code
that can be reached from methods exported in the dispatch table we use, once
again, an hybrid static-dynamic technique. First, we statically count the instruc-
tions of the exported methods and individuate all the control transfer instructions
(CTI). Then, for each CTI, if the target is another method of the same kext, we
add its instructions to the overall count.
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Unfortunately, this is not enough because, due to their object-oriented nature,
kexts include a high number of indirect CTIs, that cannot be followed statically.
For such instructions, we revert to dynamic analysis: we modified LynxFuzzer
hypervisor so that it dumps the target of every indirect CTI executed in the kext
code. If the target corresponds to a method of the kext that had not been deemed
reachable by the static analysis, then we update the instructions count with the
newly discovered method. Obviously, dynamically analyzing indirect CTIs only
allows us to see a subset of all the possible targets, thus it is impossible to gain
a fully precise count, but yet it allows us to refine our previous estimation.

Table 5.2 reports the code coverage results of a subset of the fuzzed kexts. Un-
der the “Coverage” column we report three different code coverage percentages,
respectively calculated over: the number of instructions of exported methods, the
static/dynamic estimation we just described and, finally, the overall number of
instructions contained in the kext. As we already said, consider that the first
value is an overestimation of the coverage, while the last is an underestimation.

The values we reported have been obtained by measuring the code coverage
level of the three different fuzzing engines considered as a whole. We decided to
report only this aggregated value because our purpose is to show the efficiency
of our fuzzing framework, not of the fuzzing techniques we implemented inside
LynxFuzzer.

5.4 Conclusion

LynxFuzzer is a fuzzing framework for Mac OS X kernel extensions. It is built on
top of the hardware-assisted hypervisor framework that we presented in chapter 3
and uses three different input-generation engines to discover bugs that could lead
unprivileged users to crash the machine or to attempt privilege-escalation attacks.
We used LynxFuzzer to fuzz 17 kernel extensions on Mac OS X Mountain Lion,
and discovered bugs in 6 of them.

The main problem we face with LynxFuzzer is that we are missing a precise
measure of its efficiency, if not for the bugs we discovered. At the moment,
indeed, our esteem of the code coverage obtained by our fuzzing activities is a
best effort. Even if we are able to precisely track every instruction executed
by the invocation of a kext method, the overall count over which we calculate
the coverage percentage is approximate. Furthermore, the count is extracted
statically (even for dynamically identified methods) and may be hindered by
obfuscation in kext code. We did not experience this issue in the 17 kexts we
analyzed. Nonetheless, we plan to find a better solution to improve the evaluation
of our fuzzer.

As a future work, we plan to extend LynxFuzzer to enable testing of iOS kexts.
This mobile OS, indeed, uses the same user-to-kernel interface of its desktop coun-
terpart. Furthermore, despite the raise of Android, iOS still occupies a significant
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slice of the mobile market and, given the complete lack of “biodiversity” between
devices running this mobile OS, every kernel bug could have a very strong impact.
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Related literature

6.1 Dynamic analysis

During the years, a plethora of different methods and techniques to perform
dynamic analysis at different levels (user, kernel, hypervisor) have been proposed
by both research and industry. In this section we discuss those that we feel to be
strictly related to the hypervisor-based framework we introduced in chapter 3.

6.1.1 Dynamic kernel instrumentation

Instrumentation typically entails complementing a piece of code with functionali-
ties that were not originally provided (e.g., a debug print where no debug code is
present). It is often used to monitor and analyze performances, to identify errors
and to track the execution of different components, with different granularity lev-
els: from a single user-space program to the whole kernel of an operating system.
There exist many typologies of instrumentation that can be applied to source or
compiled code, both statically, i.e., modifying the program before it is executed,
and dynamically, i.e., inserting instrumentation code at run-time.

DTrace is a facility included into Solaris kernel that allows dynamic instrumen-
tation of production systems [21]. The key points of DTrace are efficiency and
flexibility. First, the instrumentation framework itself introduces no overhead.
Second, the framework provides tens of thousands of instrumentation points. Ac-
tions to be taken are expressed through a high-level control language, similar to
C, that enables a great number of actions and includes mechanisms to guaran-
tee run-time safety. In particular, DTrace performs different checks on specified
actions and intercepting errors that happen at run-time (e.g., illegal memory ac-
cesses). By doing so, it prevents actions from introducing fatal errors into the
analyzed systems. Leveraging instrumentation points offered by DTrace, it would
be possible to offer the same analysis functionalities of our framework. However,
DTrace suffers from a strong limitation, due to the requirement that instrumen-
tation points exist a priori in the kernel. Clearly, this makes the instrumentation
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framework extremely dependent on the target kernel and impossible to use on
systems that do not offer such hooks. Our framework, on the contrary, does not
suffer from these limitations, since it allows to analyze any software component,
without relying on its source code neither on preexisting hooks.

KernInst is a dynamic instrumentation framework for commodity kernels [131].
To use KernInst it is not necessary to modify, or recompile, the target kernel. To
offer instrumentation capabilities, the framework make use of an user-space de-
mon and a kernel module, that must be installed on the target system. Users
of KernInst can use a C++ API that simply communicates with the demon and
hides details of instrumentation. Many different applications were implemented
using KernInst API. Most notably, Kperfmon is a tool to gather precise data over
kernel performances. The use of a user-space demon and of a kernel module allows
KernInst to be used without modifying the kernel a priori, contrarily to DTrace.
However, this does not make it independent from the analyzed system or easily
usable with closed source systems. Indeed, the module that offers instrumenta-
tion functionalities must be implemented for each target kernel. Furthermore, its
developer needs to have access to the kernel source code, or at least to a great
deal of internals, because the module must insert instrumentation points in the
right places at run-time, and such places are not always easy to find without a
deep knowledge of the target. Please note that, as described in chapter 3, even
our framework needs a small kernel module to be loaded on the target system.
However, the implementation of the loading driver of our framework is trivial,
as it just needs to load the code of the hypervisor, while the analysis code itself
is contained in the hypervisor and almost completely OS independent. Another
disadvantage of KernInst with respect to our framework is that its components
are easily detectable.

6.1.2 Kernel-level debugging

Several efforts have been made to develop efficient and reliable kernel-level de-
buggers. Indeed, these applications are essential for many activities, such as the
development of device drivers. One of the first and most widely used kernel-
level debuggers that targeted the Microsoft Windows operating system was Soft-
ICE [119], but today the project has been discontinued. However, both com-
mercial [128] and open-source [108] alternatives to SoftICE appeared. Modern
versions of Windows already include a kernel debugging subsystem [85]. Unfor-
tunately, to exploit the full capabilities of Microsoft’s debugging infrastructure,
the host being debugged must be physically linked (e.g., by means of a serial
cable) with another machine. All these approaches share a common factor: to
debug kernel-level code, they leverage another kernel-level module. Obviously,
this is like a dog chasing its tail. The framework proposed in chapter 3 of this
dissertation does not require any kernel support nor to modify the kernel to add
the missing support at run-time.
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6.1.3 Frameworks based on virtual machines

Instead of relying on a kernel-level module to monitor other kernel code, an
alternative approach consists in running the target code inside a virtual machine
and performing the required analyses from the outside [43, 12, 106, 144, 78].

In [62, 143, 34] the authors propose virtual machines with execution replay-
ing capabilities: a user can move forward and backwards through the execution
history of the whole system, both for debugging and for understanding how an
intrusion took place. More particularly, King et al. [61] propose an execution
replaying-based debugger that allows users, among other things, to set break-
points on already executed instructions and to perform backwards single-stepping
in the execution history of the system. Instead, ReVirt by Dunlap et al. [34], is
a framework that tries to solve the problem of gathering consistent and reliable
logging traces on systems compromised by malware with enough execution priv-
ileges to corrupt the kernel of the victim to hide their traces. ReVirt executes
the target system inside a virtual machine and logging from outside, to prevent
a malware from destroying its traces. Furthermore, it leverages execution replay-
ing techniques to grant an extreme precision and completeness of the produced
traces. Finally, Chow et al. propose Aftersight [25], a system that decouples
execution recording from execution trace analysis, thus reducing the overhead
suffered by the system where the guest operating system is run. Nowadays,
Aftersight is part of the VMware platform, and other mainstream commercial
products provide similar capabilities. The framework proposed in chapter 3 can
provide these functionalities even on systems not running in a virtual machine
natively. Aftersight is part of VMware [136].

All the approaches reported in this section are affected by two main problems.
First, they assume the transparency of software hypervisors they use, and this
is not always the case [81, 80]. Second, they require that the target system is
natively bootstrapped as a guest of their virtual machines. This clearly prevents
to use such approaches on systems that require particular hardware configurations
or that cannot easily be rebooted inside a virtual machine.

6.1.4 Aspect-oriented programming

Aspect-oriented programming is a paradigm that promises to increase modu-
larity by encapsulating cross-cutting concerns into separated code units, called
“aspects”, whose “advice” code is woven into the system automatically, by spec-
ifying the properties of the join-points. AspectC is an aspect-oriented framework
that is used to customize (at compile-time) operating system kernels [29, 74, 75].
More dynamic approaches have been proposed: for example TOSKANA provides
before, after and around advices for in-kernel functions and supports the imple-
mentation of aspects themselves as dynamically exchangeable kernel modules [36].
The framework proposed in chapter 3 allows to achieve the same goal while being
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transparent and fault-tolerant.

6.1.5 Malware analysis

Dinaburg et al. proposed Ether [33], a malware analysis framework that has
some common points with the framework we presented in chapter 3. Indeed,
Ether leverages hardware-assisted virtualization to perform its analyses for an
environment that is more privileged than the operating system where the malware
runs and thus is transparent. These are fundamental features for a malware
analysis framework, as we outlined many times in this dissertation. The main
differences between Ether and our framework is that the former does not include
an ad-hoc hypervisor, but is based on Xen [11]. Xen does not support late
launching, restricting Ether analyses to systems that are natively run in a Xen
virtual machine.

6.2 Malware detection

Most relevant papers for the AccessMiner detector and its uses of system-centric
access activity models, which are illustrated in chapter 4, focus on malware de-
tection at the system call and the system library interfaces. These interfaces
best describe the system resources manipulated by a program (e.g., files, other
programs, other processes, configuration data, authentication and authorization
information, network communication channels), making system call-based detec-
tors comparable to AccessMiner’s access activity model.

Malware detection has looked at many ways to describe program behavior,
and corresponding models evolved to keep pace with the increasing complexity of
malware. Early detection mechanisms were based on particular byte sequences
in the program binary that were indicative of malware. Over time, obfuscation
strategies pursued by malware writers forced detectors to move to regular expres-
sions over bytes [130], and eventually rendered them obsolete as byte patterns
have little predictive power (i.e., they can accurately capture only previously
seen malware). Other models such as byte n-grams [71], system dependencies of
the program binary [112], and syntactic sequences of library calls [142, 90] have
been proposed with limited success. AccessMiner emphasis on a system-centric
approach to modeling resource interactions bypasses such syntactic artifacts.

The software-diversity tactics employed by malware writers required new de-
tection techniques that could capture more of the intent of the program and
less of the syntactic characteristics of the program binary. The research efforts
have focused on describing malware in terms of violations to an information-flow
policy. Because it is not feasible for performance reasons to track system-wide in-
formation flows accurately, the focus shifted on better and better approximations
of the information flow. Bruschi et al. [16] and Kruegel et al. [66] showed that
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some classes of obfuscations could be rendered innocuous by modeling programs
according to their instruction-level control flow, while Christodorescu et al. [26]
and Kinder et al. [59] built obfuscation-resilient detectors based on instruction-
level information flow. Nonetheless, instruction sequences are fungible and there
are many ways to implement the same high-level functionality. Detection tech-
niques then raised the bar by capturing information flow at the level of library
calls, as proposed by Kirda et al. [63], system calls, as proposed by Kolbitsch et
al. [64], Christodorescu et al. [27], Martignoni et al. [82], and Stinson et al. [122],
and OS resources, as proposed by Yin et al. [145]. The respective evaluations of
each of these techniques shows that as the models used in detection more closely
describe actual OS resources, the detection rates significantly increase and the
false-positive rates decrease. Unfortunately the library and system-call interfaces
are rich enough that mimicry attacks are still possible [65, 138]. This observation
guided the choice of using system resources as the basic element in our models,
discarding any information about the order in which resources are accessed. Fur-
thermore we focus strictly on system resources that are shared across processes
(i.e., files, registry, network connections) and we ignore single-process resources
such as virtual memory.

Beyond proposing a richer, system-centric model of program behavior, we
made a concerted effort to improve an often overlook evaluation aspect, the exter-
nal validity of the experimental settings. This concerns the number and diversity
of benign and malicious programs used to evaluate a detection technique, as well
as the environment in which they are exercised (in the case of detectors that rely
on runtime information). For example, Kirda et al. [63] evaluated their system
against 33 malware samples and 18 benign samples, each samples executed for
30–60 seconds. Kolbitsch et al. [64] used 563 malware samples and 10 benign
samples, executed for up to 5 minutes. Christodorescu et al. [27] evaluated 16
malware samples and 6 benign samples for up to 4 minutes, similar to the test sets
used by Martignoni et al. [82] (7 malware, 6 benign) and to Stinson et al. [122]
(6 malware, 9 benign). Yin et al., in their Panorama system, evaluated 42
malicious samples and 56 benign ones, for 5 minutes. What is common to all of
these evaluations is that both the numbers of malicious samples and of benign
samples are quite small. On current systems, regular users often run tens of in-
teractive applications and hundreds of background processes, casting doubt on
the relevance of results obtained from a few benign samples. Furthermore, evalu-
ations in previous work were performed in virtualized, constrained environments,
where interactive applications were exercised mechanically in ways that do not
necessarily reflect real-life usage. We addressed these limitations by collecting
execution traces of benign applications from actual users, during the course of
their normal interaction with their personal systems. We designed our system to
have low overhead and to anonymize all collected information, so that the users
had no concerns and were not impacted in their regular use of their machine.
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6.3 Fuzzing and vulnerability identification

The fuzzing approach we illustrated in chapter 5 has a rich related literature.
Researchers over the years proposed many works focused on kernel protection,
on the identification of bugs in kernel-level code or, more generically, on fuzzing
and automatic testing techniques.

The closest work to LynxFuzzer is found in an online presentation by Xiaobo
and Hao [23] that briefly analyzes the possibility of fuzzing OS X kernel exten-
sions through DeviceInterface. Unfortunately, a deep comparison between such
work and LynxFuzzer is hindered by the lack of details of the former. The de-
picted approach appears to be largely manual and there is neither an analysis of
performances nor results of conducted fuzzing activities to compare.

Another similar, yet extremely more specific, approach is presented by Keil
and Kolbitsch [58] who propose a stateful fuzzer for 802.11 device drivers. Beside
its usage of stateful fuzzing, LynxFuzzer is quite different from this work, since it
addresses generic kernel extensions and leverages hardware-assisted virtualization
instead of emulation.

SLAM is a model checking engine whose goal is to automatically verify if a
program correctly uses external libraries [9, 28]. On top of such engine, Microsoft
created Static Driver Verifier, a tool to automatically analyze the source code
of Windows device drivers and determine whether it correctly interacts with the
Windows kernel. SLAM has many limitations, if compared to LynxFuzzer. First,
it requires the source code of the drivers it analyzes. Second, its scope is limited to
the correctness of interactions with known libraries. Finally, users of SLAM must
feed it with manually created rules that the tool will check for the verification,
thus requiring some manual effort.

A technique often used for testing and verification is symbolic execution [60],
along with its hybrid static-dynamic spin-off, i.e., concolic execution [114], that
we briefly illustrated in chapter 2. There are a plethora of works based on both
these techniques, but latest efforts focused more on the latter, as it allows to—at
least partly—bypass the path explosion problem. Among these, S2E is of partic-
ular interest for this dissertation [24]. S2E is a binary analysis framework that
implements the idea of selective symbolic execution, a method to minimize the
amount of code that needs to be executed symbolically. Users of S2E are able
to select particular portions of the target, and these portions are the only that
will be executed symbolically, while all the remaining code will be executed con-
cretely. Selected portions are translated into LLVM bytecode [69] and executed
symbolically through a modified version of the KLEE engine [18]. Furthermore,
on top of S2E, authors built DDT+ to automatically discover bugs in Windows
device drivers. Even if remarkably useful, S2E has some drawbacks. Selecting
only small portions of code to test is extremely useful when performed by a de-
veloper who is testing its own code and, thus, has a more or less precise idea
of where to look for bugs. In less comfortable scenarios, as for LynxFuzzer, we
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could reduce the code to be executed symbolically to a single kext at a time, or
maybe even discard some of the kext methods, but selected portions would still
be considerably large. With a runtime overhead of 78x for symbolic execution,
analyzing large portions of code could be unbearably long. This problem has also
been reported by Dowser [49] that uses S2E for its symbolic execution and tested
it with a small—yet fairly complex—piece of code containing a buffer underrun.
The vulnerability was discovered by S2E only after authors manually reduced the
number of symbolic variables to one small string. Without such reduction, it
was unable to find the vulnerability in 8 hours, thus, even if reduced, the path
explosion problem is still consistent.

Dowser is probably the most advanced approach to fuzzing targeted at finding
buffer overflows [49]. It uses a mix of static program analysis, concolic execution,
and taint tracking to automatically steer the execution of a program to interesting
locations, more likely to contain a buffer overflow. In particular, the observation
behind Dowser is that there are particular sets of instructions that are more
error-prone than others (e.g., pointer arithmetic). Interesting instructions are
identified through static analysis with LLVM and, later, the program is driven to
these instructions through concolic execution. To avoid path explosion, Dowser
proceeds as follows: first it aims at maximizing pointer value coverage, rather
than pure code coverage; second, it uses taint analysis to identify which portions
of the input can influence memory accesses in targeted code areas, and treats only
such portions as symbolic. Dowser is extremely powerful, and LynxFuzzer could
benefit by adopting a similar approach to its fuzzing activities. Unfortunately,
our approach is aimed at testing closed source software, while Dowser relies on
the source code of the target to locate interesting instructions.

Finally EXE [19] and SmartFuzzer [68] are similar to LynxFuzzer, as they
both use a combination of static and dynamic analysis to automatically generate
inputs vector that can efficiently exercise user-space applications.
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Conclusions and future directions

In this dissertation we have investigated how hardware-assisted virtualization
constitutes an optimum basis to tackle three different problems in systems secu-
rity.

As a first contribution, we presented a generic framework to perform complex
dynamic analyses of both user- and kernel-level software. Leveraging hardware-
assisted virtualization, our framework is transparent to the target of the analysis,
it does not modify the target, and does not rely on any native support for the
analysis. These properties allow to overcome many issues of previous dynamic
analysis approaches. Furthermore, our framework offers an API that can be lever-
aged to build custom analysis tools that will be executed on top of the framework.
As a further contribution, we implemented HyperDbg, a kernel debugger that can
be used to dynamically analyze the properties of three different operating sys-
tems: Windows (XP and 7), Linux and Mac OS X.

The second contribution is a malware detector, built as an evolution of Ac-
cessMiner [67]. AccessMiner uses a novel system-centric technique to model the
activity of benign programs. With this technique it is possible to identify common
patterns of how benign programs interact with the operating system resources.
Such patterns are used to create access activity models that can be later lever-
aged to identify malicious programs whose accesses are not in the model. With
a reasonable amount of training, such models have a very high detection rate
with no false positives. The contribution of this dissertation is the description
of a new version of AccessMiner, and how it can be implemented on top of our
hypervisor-based framework. This proved to be quite challenging, as we needed
not only to create a resilient and transparent system, able to perform the fine-
grained analysis required to intercept and inspect resource accesses, but, at the
same time, we needed to keep performances in great consideration. Indeed, the
new AccessMiner detector module is built to be an active malware detector and,
thus, must not have a big impact on performances of the protected system.

The third, and last, contribution is the design and implementation of Lynx-
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Fuzzer, a tool to automatically find vulnerabilities in Mac OS X kernel level
components. LynxFuzzer, as suggested by its name, is based on fuzzing and
implements three different input generation engines to stress test kernel exten-
sions. LynxFuzzer leverages hardware assisted virtualization to inspect tested
kernel extensions, without modifying them, a strong prerequisite of fuzzing: any
inadvertent modification of the target, indeed, may easily lead to wrong results.
LynxFuzzer has been implemented and tested on Mac OS X 10.8.2 (Mountain
Lion), and provided unexpected results, thus proving its usefulness and effective-
ness. More precisely, we individuated bugs in 6 of the 17 kexts we analyzed.
Furthermore, both to support one of the fuzzing engine, and to give a partial
evaluation of our fuzzer effectiveness, we implemented a code coverage analy-
sis techniques that gave interesting results, in terms of obtained precision and
overhead compared to existing techniques that can be used to measure the code
coverage of kernel-level components.

New horizons opened by hardware-assisted virtualization are not limited to
what has been shown in this dissertation. At the moment, indeed, we are already
investigating how to leverage EPT to fine-grainedly track memory allocations of
a process, without dwelling on the many details and intricacies of specific allo-
cators. The ability to track how a process deal with memory, abstracting from
the allocator used by the system, is interesting because it may allow to detect,
and block, some exploits. In particular, modern exploits targeting browsers and
pdf readers use spraying techniques [14] to bypass ASLR [133], by filling memory
with executable attacker-controlled code to maximize the probability of hijacking
the control flow to a useful memory location, despite randomization. Prelimi-
nary results show that tracking a process allocations and its write-then-execute
patterns on allocated pages can identify attacks with a good precision, and a
fairly low overhead. Results are promising, but we still need to thoroughly test
our approach, and tune our detection heuristics to find a wider range of attack
variations.

Finally, nowadays it is impossible to speak of systems security without at
least hinting at mobile systems security. Such systems are indeed becoming more
and more frequently a target for cybercriminals and their characteristics make it
hard to adapt previously developed solutions. For example, reduced computing
power and low battery life require to inspect solutions with an extremely low
impact on these resources, making static analysis attractive once again. Software
virtualization, however, has been already to apply dynamic analysis on mobile ap-
plications [106, 144]. Such solutions, however, are still confined to offline analysis,
because of the amount resources they require. Recently, however, ARM intro-
duced hardware support for virtualization on its CPUs too (most of the CPUs
used on mobile devices are ARM) [46]. Thus, we plan to investigate if, and how,
ARM hardware-assisted virtualization technology can be used to develop power-
ful defense and prevention techniques for mobile operating systems, keeping in
mind the scarce resources of mobile devices.
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