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The aim of this PhD research was to describe an assessment of the 

potential impacts of climate change as well as climate variability on 

rice production. It also discusses selected adaptation options within 

the context of the Malian agriculture. The research centers on an 

integrated modelling approach (BioMA) to compute current and future 

(2020, 2050) crop yields in the agricultural region of the Office du 

Niger (Mali). 

BioMA – Biophysical Models Application – is a platform for running 

biophysical models on generic spatial units. The application is based on 

independent components which allow implementing modelling 

solutions targeted to specific modelling goals. 

The collected data were used to (i) develop new modules (a model for 

simulating the height of the plant) (ii) implement the existing ones 

according to the peculiarities of the sub-Saharan environment (i.e. the 

Agromanagement module was extended in order to take into account 

the beginning of the rainy season) and to (iii) calibrate and validate the 
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modelling solution defined for the purpose. Although 

parameterization procedures were performed in critical conditions – 

being reference data from the area a limiting factor – a preliminary 

calibration of WARM, for tropical and subtropical conditions, could be 

performed aromatically on Chinese datasets. Indeed these results 

achieved from these modelling exercises showed that the model is 

robust and able to reproduce yield variability within years and 

locations which made it suitable for the impact assessment study in 

Mali. 

The impact assessment on cropping systems was evaluated via a 

difference analysis with respect to the current conditions, focusing on 

changes in total biomass, final yield and transpiration demand. An 

overall reduction can be expected in 2050 (up to complete failure of 

the crop) whereas different results were obtained for 2020. The main 

season seem to be little affected by the increase of temperatures 

whereas the first cycle, which takes already place under extremely 

high temperatures, will face reductions up to 25%.  

Based on the results obtained in the impact assessment changes in 

sowing dates were tested in order to detect the most suitable 

management techniques which allow alleviating the negative effect of 

climate changes. The results suggested that changes in the sowing may 

be very effective in mitigating the adverse effect of climate change as 

well as the use of new crop cultivars with longer vegetative cycles. In 

fact in both systems an increase of production can be expected at 

short-term whereas at medium-term the losses can be significantly 

reduced. 
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1.1. Climate change impact assessment 1.1. Climate change impact assessment 1.1. Climate change impact assessment 1.1. Climate change impact assessment     
    
The Framework Convention on Climate Change (UNFCC) defines 

climate change as ‘a change of climate which is attributed directly or 

indirectly to human activity in addition to natural climate variability 

that alters the composition of the global atmosphere observed over 

comparable time periods’. According to Rosenzweig et al (2008), this 

anthropogenic climate change is having a significant impact on 

physical and biological systems at both the global and continental 

scale (although for some continents, there is not enough long-term 

observation data to provide a reliable conclusion). This has led to the 

emergence of a growing body of literature suggesting that climate 

change will result in a set of diverse and location-specific impacts on 

agricultural production. Due to the complexity governing the 

interactions between these processes and the uncertainty associated 

with modelling them, it is not presently possible to reliably quantify 

the aggregate impacts of climate change on global-scale agricultural 

productivity (Gornall et al., 2010). 

Agricultural systems are managed ecosystems. Thus, the human 

response is critical to understanding and estimating the effects of 

climate change on production and food supply. Agricultural systems 

are also dynamic; producers and consumers are continuously 

responding to changes in crop and livestock yields, food prices, input 

prices, resource availability, and technological change. Accounting for 

these adaptations and adjustments is difficult but necessary in order 

to measure accurately climate change impacts. Failure to account for 

human adaptations, either in the form of short-term changes in 

consumption and production practices or long-term technological 
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changes, will overestimate the potential damage from climate change 

and underestimate its potential benefits. 

Climate change is a complex biophysical process. Even if it is not 

possible to predict precise future climate conditions the basis for 

assessing potential impacts of climate change is future climate 

predictions. To obtain such predictions, it is necessary to have a 

reliable model of the climatic system and to use it to estimate possible 

future outcomes. A clear distinction has to be done between these two 

concepts: models, which are based on physical laws, and scenarios, 

which are a coherent, internally consistent and plausible description 

of a possible future state of the world. Currently, the most advanced 

tools designed for studying climate processes and for projecting 

climate response to human-induced are coupled Atmosphere-Ocean 

General Circulation Models (commonly called GCM). GCMs have been 

developed to project future climates based on different greenhouse 

gas scenarios and complex earth atmosphere interactions. They are 

based on physical laws describing the dynamics of the atmosphere and 

oceans, incorporating numerical representations of the physical 

processes of radiation, turbulent transfer at the ground-atmosphere 

boundary and cloud formations (Barron, 1995).  

The IPCC Fourth Assessment Report presented 23 general circulation 

models (GCMs) that by design span the globe. While some of these 

models are relevant to Africa and are reported at pixel resolutions of 

around 250 km2, the underlying data used to generate this 

information are often so highly aggregated so as to undermine their 

utility at projecting regional climate. Some of the commonly used 

GCMs in the scientific literature are the HadCM3 model (Collins et al., 
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2001) developed at the Hadley Centre in the United Kingdom, the 

ECHAM5 model (Roeckner et al., 2003) developed at the Max Planck 

Institute for Meteorology and the GFDL CM2 (Delworth et al., 2006) 

developed at the NOAA Geophysical Fluid Dynamics Laboratory in the 

United States. All three have been leading climate models used in the 

recent IPCC assessments. While the spatial resolution of GCMs is 

sufficient to simulate the averaged global climate, their output is 

often unsuitable when the scale of interest is refined. In fact whilst 

GCMs can more accurately project changes in average global 

temperature, these projections are often of little use to decision 

makers working on regional or local scales. Nevertheless, growing 

recognition of the need for climate information at finer scales is itself 

a driver of the volume of work aimed at downscaling climate model 

information for local and regional decision makers. At a finer scale or 

higher resolution, several factors complicate climate modelling, 

including local topography, land cover and land use features, the 

presence of atmospheric aerosols and other pollutants. To address 

climate modelling at regional scale several downscaling methods (e.g. 

Regional Climate models (RCMs) or stochastic weather generator) 

have been developed driven by initial and boundary conditions 

supplied by a GCM. Advances in climate change have improved the 

number, quality and availability of GCM scenarios, with a few of direct 

relevance to Africa. More important than the increased availability of 

GCM data, recent years have also seen an increase in downscaling 

efforts, both dynamic and empirical, providing information at a finer 

scale that, relative to the data produced by GCMs, is more relevant for 

research and policy making. This is because downscaled data, when 

analyzed appropriately, can provide station level responses from GCM 
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patterns, improving the temporal and spatial resolution of available 

information. In Africa, however, the number of available downscaled 

datasets remains limited (especially when compared to those available 

for Europe and North America) and they are the product of an even 

more limited number of institutions and models 

1.2. Climate variation and change in Africa1.2. Climate variation and change in Africa1.2. Climate variation and change in Africa1.2. Climate variation and change in Africa    
    
Observational data show that Africa has been warming through the 

20th century at the rate of about 0.5°C per decade (Hulme et al., 2001). 

Although this trend seems to be consistent over the continent, the 

changes are not always uniform (Malhi and Wright, 2004; Kruger and 

Shongwe, 2004). Rainfall exhibits even more spatial variability and a 

notable temporal variability too. Interannual rainfall variability is 

large over most of Africa and, for some regions, multi-decadal 

variability is also substantial, e.g. in West Africa, a decline in annual 

rainfall has been observed since the end of the 1960s with a decrease 

of 20 to 40% (Dai et al., 2004). Model-based projections of climate 

change across Africa show considerable projected changes, based on 

the different input assumptions (e.g. greenhouse gas emission level) 

and model physical laws. In a comprehensive paper on climate change 

in Africa over the period 1900 2100, Hulme et al. (2001) show that 

climate change is not simply a phenomenon of the future, but one of 

the relatively recent past. Hulme et al. (2001) and IPCC suggest a 

future annual warming across Africa of between 0.2 and 0.5 ºC per 

decade. This translates to a warming of between 2 and 6 ºC by 2100, 

with the greatest warming over the interior semiarid tropical regions. 

Climate change projections realized by running GCMs (or RCMs) under 

different emission scenarios are intrinsically subject to a significant 
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amount of uncertainty. While there is a general consistency in 

projected temperatures for Africa, precipitation projection are 

generally less consistent with large inter-models ranges for seasonal 

mean rainfall responses. Despite these uncertainties estimates of 

projected future rainfall has been undertaken. The projected rainfall 

changes for 2050 in IPCC (2001) is small (20% from baseline values) in 

most African areas. However, the results also show an increase in 

occurrence of extreme events in both rainfall (wet/dry years) and 

temperature. These changes are mostly likely to be more robust than 

changes in mean rainfall (Huntingford et al., 2005), and could have 

serious repercussions on crop production. Extreme events have long 

been recognized as being a key aspect of climate change and its impact 

(Burke et al., 2006). 

1.3. Impacts on agricultural production: an integrated approach1.3. Impacts on agricultural production: an integrated approach1.3. Impacts on agricultural production: an integrated approach1.3. Impacts on agricultural production: an integrated approach    
    
As noted above the magnitude of the projected impacts of climate 

change on food crops in Africa varies widely among different studies 

and according to which GCM and/or crop model is used (Challinor et al., 

2007 and Challinor et al., 2009). Most of them have assessed the effect 

of climate change on agricultural productivity using different climate 

models and emission scenarios (IPCC SRES) and have indicated that 

world agriculture, either in developed or developing countries remains 

very dependent on climate resources. Multiple model simulations are 

needed in order to sample the inherent uncertainties in the projection 

of climate and agricultural production. Uncertainty in climate change 

impacts assessments comes from a number of sources. Future 

emissions of greenhouse gases must be estimated and the responses of 
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both the atmosphere and the impact in question have associated 

uncertainties (Challinor et al., 2005)  

Recent assessments, combining global and regional-scale analyses, 

have also examined the impacts of climate variability and change on 

growing periods and agricultural systems (Jones and Thornton, 2003, 

Huntingford et al., 2005). Under different emission scenarios (i.e. 

A1F1, A2, B1 and B2) using the HadCM3 and ECHAM4 GCMs, Thornton 

et al. (2006) assessed areas of Sub- Saharan Africa under current and 

projected impacts of climate variability and change and showed that 

among other factors, the length of the growing period (LGP) was one of 

the elements that would be significantly affected by climate change. 

The study further concludes that by 2020 some losses in LGP greater 

than 20% will occur in highly marginal cropping areas. By 2050, areas 

that showed gains in LGP would have lost growing days as a result of 

the higher projected increases in temperature and projected changes 

in precipitation patterns and amount. Other studies indicate some of 

the additional impacts that may be experienced in a warmer world, 

which will increase challenges for food production and food security. 

Regarding water resources, by 2025 it is projected that 64 per cent of 

the world’s population will live in water-stressed basins, compared 

with 38% today (Rosengrant et al., 2001). There are also likely to be 

substantial changes in land suitability for agriculture under future 

scenarios, by the end of the century, 15% of the land globally that is 

currently suitable for cultivation would become unsuitable, although 

this is more than balanced by an extra 20% of land that is currently 

too cold to support cultivation becoming suitable (Arnell 2009). But 

there is no balance in the situation for Africa. In East and southern 



30 
 

Africa, Arnell estimates that about 35% of current cropland will 

become unsuitable for cultivation. These stresses will add to the 

difficulties of adopting new varieties or increasing agricultural 

productivity, as water and land availability are key limiting factors 

(Thornton and Jones, 2011). On a more national scale, assessments 

have shown a range of impacts, Mohamed et al. (2002), using time 

series data of rainfall, crop production and other weather and 

agronomic data from Niger, argued that by 2025 climate change might 

reduce millet yields by 13% and groundnut yields by 11 to 25%. 

Downing (1992) argues that potential food production in Kenya will 

increase if increased temperatures are accompanied by high rainfall, 

while marginal zones will be adversely affected by decreased rainfall. 

This argument is supported by Makadho (1996), who argues that maize 

production in Zimbabwe is expected to fall as a result of increased 

temperatures and reduced rainfall. It appears evident therefore that 

African agriculture is very vulnerable to climate change. Although 

there are established concerns about climate change in Africa, little 

work has been carried out to show how seriously the problem will be in 

Sub Saharan Central Africa. Hence an integrated framework for 

assessing climate change impact on cropping systems in in specific 

districts of Mali and Burkina Faso was implemented in order to allow 

more detailed assessment of the impact on food production and 

security among the Sub-Saharan countries and the definition of 

suitable adaptation options 

1.4. Adaptation strategies for agricultur1.4. Adaptation strategies for agricultur1.4. Adaptation strategies for agricultur1.4. Adaptation strategies for agricultureeee    and foand foand foand food security od security od security od security     
    
The impacts described above in the 4◦C+ world hypothesized by 

Thornton and Jones (2011) will require quite radical shifts in 



31 
 

agriculture systems, rural livelihood strategies and food security 

strategies and policies. Proactive adaptation will require much more 

concerted effort at all levels to manage quite radical shifts. In addition, 

when food security is considered as the outcome of food systems, 

which expand beyond agricultural production to include markets, 

trade and distribution networks, for example, the evaluation of 

successful adaptation becomes more difficult. For crops, changes in 

management practices and strengthening of seed systems are two key 

approaches to adapting agricultural systems in SSA (Challinor et al., 

2007). While local seed systems can be resilient to climatic stresses 

(Sperling et al., 2004) the challenge for the future is to improve access 

to the varieties that will be needed as climate changes and to adapt 

farming systems to new climatic, land and water constraints. 

Good practice in adaptation is constrained by a number of factors, and 

these will become much more critical in a 4◦C+ world. First, there are 

inherent limits to the predictability of both climate and its impacts; 

and there is variability in the methods and assumptions used by any 

single study to assess probable impacts. Thus, not only is our 

knowledge of the future necessarily imprecise, but also the degree of 

precision claimed by different studies varies considerably, making 

such studies not directly comparable. 

The results achieved in research projects carried out in African and 

Asian conditions provide sufficient evidence that climate change will 

exhibit different impacts on crop yield depending on the climate 

change scenario investigated. Tingem et al., (2009) showed that the 

HadCM3 climate scenarios had the least severe impacts on crop yields 

whilst those of the GISS were the most detrimental, especially to 
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maize and sorghum yields. However, the results provide useful 

insights for recommendations pertaining on future policies for 

adaptation in agriculture. For example, as an adaptation option, in 

order to alleviate the negative effect of higher temperatures on crops, 

research should be undertaken to create cultivars with higher optimal 

temperature requirements. Furthermore, the negative yield influence 

of year-to year variation of crop yields can be addressed by long range 

forecast of weather conditions. The findings presented in this chapter 

must not be seen as accurate predictions of future crop yields, but 

more as indicators of the possible impacts of climate change on 

Burkina Faso crop agriculture, which would be useful in designing 

appropriate adaptation options. Results of the climate change impact 

assessment showed that without adaptation, it will be problematic for 

agricultural production in Sub-Saharan Africa. However, several 

studies have suggested that detrimental climate impacts can be 

reduced and numerous opportunities can be created by the changing 

conditions (Thornton and Jones, 2011, Lobell et al., 2008, Brown and 

Funk, 2008). Extreme climate events will probably be the most 

challenging under future climate change (Rosenzweig et al., 2001). 

Farmers have traditionally used indigenous knowledge to mitigate 

climate hazards based upon observations and interpretation of natural 

phenomena and the currently adopted cropping calendars are largely 

based on that knowledge. However the foreseen changes of climate 

will probably be above the natural adaptation capacity of local 

population and it’s very likely that most of these strategies need to be 

supported with national policies. Moreover climate change coupled 

with population growth pose serious challenges on future food 

security. These challenges emphasize the need to realign and adopt 
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new policies that contribute to greater resilience of the agricultural 

sector. Previous research conducted in developing country settings 

indicates that, in principle, climate change impacts on agriculture can 

be reduced through human adaptations such as; adjusting sowing 

dates, changing cropping patterns (Winters et al., 1998), adopting 

higher yielding and heat resistant cultivars, and improved extension 

services (Butt et al., 2005). 

1.5. The BioMA modelling framework 1.5. The BioMA modelling framework 1.5. The BioMA modelling framework 1.5. The BioMA modelling framework     
    
To quickly respond to demand of analysis of complex systems a model 

framework is needed to cover the different aspects which need to be 

taken into account. In fact, although biophysical models are already an 

effective tool for system analysis, a large effort still needs to be acted 

on to allow exploiting their full potential. This aiming at addressing 

the multiple and moving targets required by integrated analyses, in 

which bio-physical modeling plays the role of data provider to the 

following steps of the modeling chain. The work to be done can be 

identified as further improvement of models in terms of integration of 

modeling approaches and to building database of reference data to be 

used as benchmark for model evaluation (Donatelli, 2011). 

BioMA – Biophysical Models Application – is a platform for running 

biophysical models on generic spatial units. The application is based on 

independent components, for both the modelling solutions and the 

graphical user's interface. The component-based structure allows 

implementing in BioMA diverse modelling solutions targeted to 

specific modelling goals. The system allows also for adding new 

modelling solutions. Modeling frameworks represent a substantial 



34 
 

step forward with respect to monolithic implementations of models 

describing environmental processes, especially in the light of 

integrated modeling efforts, where different perspectives and 

domains are to be considered. The separation of algorithms from data, 

the reusability of services such as I/O procedures and integration 

services, the target of isolating a modelling solution in a discrete unit 

brought a solid advantage in the development of software simulation 

systems in terms of flexibility and maintainability (Donatelli, 2011) 

The key requirements of its design aim at maximizing (i) extensibility 

with new modelling solutions (ii) ease of customization in new 

environments (iii) ease of deployment and (iv) transparency of 

workflows. Moreover the implementation of modelling platforms 

allows enhancing simulation capabilities by adding crop-specific 

models under a flexible framework and further components to enrich 

the crop models (frost kill, pest and diseases, inundation) and simulate 

possible impacts on yields. It allows also running tailored modelling 

solutions targeted on the different goals. In fact a modelling solution is 

a discrete simulation engine where different models are selected and 

integrated in order to carry out simulations for a specific goal. Each 

modelling solution makes use of extensible components and allows 

adding simulation of relevant processes not considered in the core 

crop growth model and impacting on final yields. 

1.1.1.1.6666    The The The The research framework: research framework: research framework: research framework: the BECRA project the BECRA project the BECRA project the BECRA project     
    
Although general pattern of response are expected as a result of 

climate scenarios in the coming decades, several studies have shown 

that climate, agricultural system sustainability and resilience to 
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adverse conditions may vary noticeably, both from a bio-physical and 

bio economical point of view, according to site. Consequently technical 

issues about production sustainability and production risk, applied to 

known and innovative production enterprises, interact with economic 

issues at micro and macro level. An integrated analysis is hence 

required for impact assessment and to develop adaptation scenarios 

for agricultural production.  

The project BECRA (Bio-Economic analysis of climate change impact 

and adaptation of Cotton and Rice based Agricultural production 

systems in Mali and Burkina Faso) is an administrative arrangement 

between the European Commission Joint Research Centre (DG JRC) 

and the EuropeAid Co-operation Directorate- General of the European 

Commission (DG AIDCO), Contract n° 2008/170-047. The project has 

been carried out in cooperation with JRC-Food-Sec and the Institut 

Agronomique Méditerranéen de Montpellier (IAMM). In order to 

ensure expert knowledge and data collection cooperation with 

technical and higher education bodies in the regions of the case 

studies were envisioned. This cooperation was partially extended to 

government research bodies as a mean of having national 

governments endorse the results/methodology of the study, and 

therefore facilitate their use in policy dialogue on climate change. The 

main goal of the service agreement, carried out in two phases, is the 

development of a model framework for assessing climate change 

impact on cropping systems in specific districts of Mali and Burkina 

Faso, and defining adaptation strategies.  

This project examined the effect of short and medium term climate 

variability and the change on rice production in Mali and cotton based 
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rainfed cropping systems in Burkina Faso and identifies the 

adaptation options of the whole bio-economic systems using an 

integrated simulation analysis. 

Within this context the research presented in the following 

paragraphs refers to the activities carried out in order to extend the 

modelling platform and to test the component on specific case studies 

referring particularly to the above mentioned BECRA project. In fact 

the project applies the methodology implemented within the research 

activity to specific case studies; therefore it represents a sort of pilot 

study showing the potentiality of integrated approaches to climate 

change impact assessment studies. 

Within this context the specific objectives of this research were: 

� Building a database of knowledge and reference data to be used 

in further climate change impact assessment studies; 

� Collecting data in order to calibrate and validate existing 

modelling solutions used to run simulations under current 

conditions and future climate scenarios; 

� Implementing new modelling component an approaches in 

order to improve the reliability of the simulation results; 

� Simulating the effect of climate change impact on the cropping 

system of the case study and defining possible adaptation 

strategies. 

1.7. Synopsis1.7. Synopsis1.7. Synopsis1.7. Synopsis    
    
In Chapter 2 (Analysis of sample size for variables related to plant, soil, 

and soil microbial respiration in a paddy rice field) the variability of 
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different aspects of a paddy rice fields through sample size 

determinations for some of the plant and soil features of interest in 

agronomic field experiments was analyzed. 

The objective was to underline the importance of carrying out pre-

samplings in order to assure the reliability of collected data given that, 

as showed in the paper, the sample size varies according to the 

variable analyzed and according to the management conditions. In fact 

the quality of the input data used to describe the current conditions in 

a climate change impact assessment study can force a strong 

simplification process thus reducing the power of any innovative 

integrated approach.  

Chapter 3 (An improved model to simulate rice yield) introduces the 

WARM model specific for the simulation of rice growth under flooded 

and unflooded conditions in China and Italy. The achieved results show 

that, once the most relevant model parameters were calibrated, the 

model was able to reproduce rice growth in temperate and tropical 

environments. The robustness and accuracy, combined with the low 

requirements in terms of input data make the model suitable for 

forecasting rice yields at regional, national and international scales 

and to be used in climate change impact assessment studies. 

Chapter 4 (A model for simulating the height of rice plants) presents a 

new model for the simulation of plant height based on the integral of 

the percentage of biomass partitioned to stems. Although previous 

studies do not emphasize the importance of simulating correctly plant 

height a reliable approach for modelling this variable would allow the 

simulation of processes with a significant impact on rice yield e.g., 
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lodging, floodwater effect on leaves temperature, crop-weeds 

competition for radiation interception, etc.  

Chapter 5 (Simulating climate change impact on rice production under 

extreme thermal regimes: a case study in Mali) examines the effect of 

short and medium term climate variability and the change on rice 

production in Mali and identifies the adaptation options of the system 

using an integrated simulation analysis.  Additionally the work focus 

on the changes required on the response functions to temperature in 

order to reproduce correctly the growth in environments 

characterized by extreme thermal regimes. 

1.8. Notes1.8. Notes1.8. Notes1.8. Notes    
    
Chapter 2 has been published by Field Crop Research, vol.113 (2009), 

pp.125 – 130. 

Chapter 3 has been published by Agronomy for Sustainable 

Development, vol. 29(3), (2009), pp.463 – 474 

Chapter 4 has been published by European Journal of Agronomy, vol. 

34(1), (2011), pp.20 – 25  

Chapter 5 has to be submitted. 

The reference lists from individual chapters have been combined into 

one list at the end of the thesis. 

The License Agreement provided by Copyright Clearance Center for 

the use of the already published papers in the dissertation can be 

provided on request 
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2.1 Abstract2.1 Abstract2.1 Abstract2.1 Abstract    
    
Pre-samplings for sample size determination are strongly 

recommended to assure the reliability of collected data. However, 

there is a certain dearth of references about sample size 

determination in field experiments. Seldom if ever, differences in 

sample size were identified under different management conditions, 

plant traits, varieties grown and crop age. In order to analyze any 

differences in sample size for some of the variables measurable in rice 

field experiments, the visual jackknife method was applied to pre-

samples collected in a paddy rice field in Northern Italy, where a 

management typical for European rice was conducted. Sample sizes 

for 14 variables describing plant features (plant density, spikelet 

sterility, biomass, carbon and nitrogen concentration for the different 

plant organs and for the whole plant) and for 12 variables describing 

physical and chemical soil features (texture, pH, water holding 

capacity, soil organic matter, total carbon and nitrogen concentration, 

mineral nitrogen concentration) and soil microbial activity were 

estimated. The elementary unit of observation was a 3-plant sample 

and an aggregate sample of 4 125 cm3 sub-samples for soil. Sample 

sizes ranged between 15 and 27 for plant related variables and 

between 5 and 6 for soil variables. Relating to plant features, 

remarkable differences in sample size were observed in carbon 

concentration values of different plant organs, probably due to 

maintenance respiration. Homogeneity among sample sizes for soil 

variables could be explained by the capability of aggregate samples in 

capturing a big part of the total variance. This study underlines 
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importance of carrying out pre-samplings aiming at sample size 

determination for different variables describing the cropping system. 

2.2 Int2.2 Int2.2 Int2.2 Introductionroductionroductionroduction    
    
Preliminary samplings aiming at determining sample size should be 

carried out before performing measurements to avoid the collection of 

data characterized by low reliability (Lapitan et al., 1979; Nath and 

Singh, 1989; Tsegaye and Hill, 1998; Ambrosio et al., 2004). However, 

sample size is often arbitrarily determined (Confalonieri et al., 2006a), 

increasing the probability of Type II errors if the sample size is smaller 

than needed or expending critical resources or funds if the sample size 

is larger than necessary (James-Pirri et al., 2007). 

Although references about description of experiments where sample 

size was determined are not common, the effort invested in carrying 

out, describing and discussing results in the rare available examples 

demonstrates the importance of this practice. 

According to the different situations, sample size determination is a 

process characterized by different degrees of complexity. Madhumita 

Das (2007) estimated sample size for saturated hydraulic conductivity 

of 129 topsoil samples (0.00-0.20 m depth) in India, founding values 

from 2 to 8 according to different levels of confidence and error 

percentage. Analyzing severity of Septoria leaf spot (caused by 

Septoria albopunctata) on blueberry plants, Ojiambo and Scherm 

(2006) identified 75 leaves (selected from 3 shoots per bush on 25 

bushes) as the optimal sample size to determine disease severity as 

number of spots per leaf. A sample of 144 leaves (2 each sampled from 

3 shoots per bush on 24 bushes) was required to detect disease severity 
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as percent of necrotic leaf area. Araujo et al. (2004) identified 15% of 

total root mass of common bean plants as adequate to provide reliable 

root traits estimates. Lima e Silva et al. (2005) calculated sample size 

for 4 sorghum traits: plant height, dry matter without panicle, panicle 

length, and panicle dry matter, finding sample sizes of, respectively, 

14, 11, 14, and 24 plants per plot concerning the 4 variables were 

adequate. A single sample size of 25 plants was found by the same 

authors for all the variables using the experimental coefficient of 

variation alone instead of a formula for sample size derived by 

Thompson (1992). The estimation of different sample sizes for 

different traits was carried out also by Storck et al. (2007), who 

estimated sample size for the following maize traits: ear length, ear 

and cob diameter, ear weight, weight of grains per ear, cob weight and 

the weight of 100 grains, the number of grain rows per ear, the number 

of grain per ear and the length of grains. Results showed that the 

weight-related ear features needed 21 ears for a precise (5%) 

determination; 8 and 13 ears were needed respectively for size- and 

number-related features. Confalonieri et al. (2006), analyzing paddy 

rice fields, estimated samples size values ranging from 15 to 33 plants 

under different management conditions (nitrogen fertilization, 

sowing techniques, sown variety) and development stages. 

In these examples, different techniques to determine sample size were 

used and specific solutions were applied in the different conditions. 

Ojiambo and Scherm (2006) sampled plants at 3 hierarchical levels 

(leaf, shoot, bush) and related the sample size to the total time 

required for the determination (respectively 36 and 22 min in the two 

cases), thus taking into account the effort required in each case. Time 
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required determining a variable was taken in account in sample size 

determination also by Araujo et al. (2004). Storck et al. (2007) 

estimated sample size according to the formula  , following the 

approach proposed by Martin et al. (2005), where CV is the percent 

coefficient of variation of the sampling error, D is the percent half-

amplitude of the confidence interval for the average and t is the 

critical value of the t distribution. The same authors estimated sample 

size for different variables/parameters by clustering them into classes 

(weight-, size-, and number-related traits). Confalonieri et al. (2006b) 

demonstrated how the sample size for rice aboveground biomass (AGB) 

determinations could vary according to management conditions using 

a resampling-based method, even when different managements affect 

plants growing in the same biophysical context. 

The objective of this paper was to analyze the variability of different 

aspects of a paddy rice fields through sample size determinations for 

some of the plant and soil features of interest in agronomic field 

experiments. In Confalonieri et al. (2006b), differences in variability 

and in sample size were analyzed for aboveground biomass under 

different management conditions; in this study, the same objective 

was pursued in a standard rice field but concerning different variables 

related to soil, plant, and soil microbial activity. 

2.3 Materials and methods2.3 Materials and methods2.3 Materials and methods2.3 Materials and methods    

2.3.1 Experimental data2.3.1 Experimental data2.3.1 Experimental data2.3.1 Experimental data    

 

Data were collected in a field located in the southern part of Milano 

(Northern Italy, 45.47 °N, 9.18 °E, 120 m a.s.l.) during 2006. The soil was 

loam, acid, with soil organic matter content next to 2.5 %. Rice (Oryza 
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sativa L., cv Libero, Indica type) was row seeded on April 12 and flooded 

at the third leaf stage (May 10; code 13 of the BBCH scale for rice; 

Lancashire et al., 1991). Rice received 140 kg N ha-1 split in 2 events: 

pre-sowing and top-dressed at the panicle initiation stage (June 29; 

code 34 of the BBCH scale for rice). 33.6 kg P2O5 ha-1 and 92.4 kg K2O 

ha-1 were distributed in pre-sowing. Field management allowed 

prevention of water and nutrient stresses and kept the field weed and 

pest free. 

Plant related measured variables were aboveground biomass at 

physiological maturity (AGB; September 19; code 99 of the BBCH scale 

for rice), plant nitrogen concentration (PNC) and plant carbon 

concentration (PCC) at physiological maturity, spikelet sterility, and 

plant density. AGB, PNC and PCC were determined for leaves, stems 

and panicles separately. Measured soil variables were texture, mineral 

nitrogen concentration (N-NO3- and N-NH4+), total carbon and 

nitrogen concentrations (SCC and SNC), soil organic matter (SOM), 

water holding capacity (WHC), pH (KCl), and pH (H2O) in the soil layer 

0.0-0.2 m. Microbial activity in the soil (SMA) was estimated using a 

respirometric approach. 

2.3.2.3.2.3.2.3.2222    The visual jackknifeThe visual jackknifeThe visual jackknifeThe visual jackknife    

 

The visual jackknife method (Confalonieri, 2004; Confalonieri et al., 

2006a) was used in sample size determination. The standard jackknife 

(Tukey, 1958) is a re-sampling method based on the division of the 

original sample of N elements into groups of k elements, with k equal 

to 1 in case N is low. ( ) !!

!

kkN

N

−
 virtual samples (combinations without 



45 
 

repetitions) of N-k elements are generated by eliminating ( ) !!

!

kkN

N

−

times k different values from the original sample. In our case, the 

original sample is represented by the data coming from the pre-

sampling. In the visual jackknife, different values of k are used. The 

process of generation of the ( ) !!

!

kkN

N

−
 virtual samples is repeated N-1 

times with k assuming values from 1 to N-2, for a total of ( )∑
−

= −

2

1 !!

!N

k kkN

N
 

different virtual samples. Mean and standard deviation are computed 

for all the generated samples and plotted on two charts, with the 

values of N-k on the X-axis and the means (or standard deviations) on 

the Y-axis, in order to get a visual representation of how the means 

and the standard deviations of the generated samples vary with 

increasing N-k values. Conceptually, the optimal sample size is 

considered equal to the N-k value for which the variability among the 

means does not really decrease anymore with increasing sample size. 

The algorithm used for the determination of the optimal sample size 

consists of selecting (N-k)’ out of those N-k higher than 2 and lower 

than N-2. Four weighted linear regressions are performed over the 

generated means as follows: the first and the second run, respectively, 

over the highest and lowest values of the N-k≤(N-k)’; the third and the 

fourth run over the highest and lowest values of the N-k>(N-k)’. A 

global index (SR2) is computed by summing the coefficients of 

determination (R2) of the four regressions. The reiteration of this 

procedure for all the possible (N-k)’ allows the identification of the 

optimum sample size, that is the (N-k)’ with the highest SR2. The 

process stops when the next sample size does not produce SR2 larger 
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than 5% than the previous. A trimming process allows leaving extreme 

samples out of computation (for instance, the 5% most external 

means). This visual jackknife method overcomes the typical 

limitations of conventional methods (parametric statistics), requiring 

data-matching the statistical assumptions of normality and 

homoscedasticity. 

The software SISSI 1.00 (Shortcut In Sample Size Identification; 

Confalonieri et al., 2007) was used to apply the visual jackknife. SISSI 

provides an easy access to the resampling-based computational 

procedures the visual jackknife is based on, and allows the user to 

easily customize the resampling settings. Numeric and visual outputs 

are displayed in the graphical user’s interface, together with the 

sample size calculated with classical procedures based on Student’s t. 

After the software has automatically applied the regression-based 

procedure to calculate the optimal sample size, the user is allowed to 

adjust manually the resampling-estimated sample size. This is meant 

to further reduce sample size if the variability achieved (expressed as 

% coefficient of variation) is expected to be low enough to fall within 

what is considered by the researcher to be acceptable. 

The SISSI’s installation package is available free of charge for non-

commercial purposes at 

http://www.robertoconfalonieri.it/software_download.htm: The 

program is fully documented by the accompanying user’s manual, 

which provides a detailed description of the scientific background and 

principles of usage. 
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2.3.3 Sample size determination2.3.3 Sample size determination2.3.3 Sample size determination2.3.3 Sample size determination    

Plant related variables 

 

AGB, PNC, PCC and spikelet sterility were determined considering a 

randomly-chosen 3-plant aggregate sample as basic unit of 

observation (Confalonieri et al., 2006b), with N equal to 27 (see section 

The visual jackknife). AGB (kg ha-1) was determined by drying the 

plant samples in oven at 105 °C until constant weight to express them 

as dry matter. PNC (%) and PCC (%) were measured using an 

Elementary Analyzer (model NA 1500, series 2, Carlo Erba, Italy), after 

milling the plant samples at 0.5 mm. Plant density (plants m-2) was 

determined adopting a value of N equal to 20 and as basic unit of 

observation the value RnL ⋅/ , where L is a segment of row measuring 

100 cm, n is the number of emerged plants in L, and R is the number of 

rows in a 100 cm segment crossing the rows. 

Soil variables 

 

SMA (mg CO2 g DM-1 25 day-1), texture, N-NO3- and N-NH4+ 

(respectively kg N-NO3- ha-1 and kg N-NH4+ ha-1), total carbon and 

nitrogen (%), SOM (%), WHC (%), pH (H2O), and pH (KCl) (-) were 

determined assuming an aggregate sample (4 125 cm3 sub-samples) as 

basic unit of observation, with N equal to 9. WHC was determined 

using the Stackman box method (Klute, 1986). SMA was measured as 

CO2 release in a static system (ISO, 2002). Soil weights of 25 g (40% of 

the WHC) were incubated at 20°C in a closed vessel and the released 

CO2 was adsorbed in a solution of sodium hydroxide (0.05 mol l-1). The 

CO2 absorbed was precipitated by adding BaCl2. The unused NaOH was 

then titrated with HCl (0.1 mol l-1). The respiration test was carried out 
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for 25 days. Texture was evaluated using the gravimetric method 

according to USDA. N-NO3- and N-NH4+ are measured with a 

continuous-flow analyzer (Flow Comp 1500, Carlo Erba, Italy). Total 

carbon and nitrogen concentration were determined using an 

Elementary Analyzer (model NA 1500, series 2, Carlo Erba, Italy). 

Data pre-processing 

 

Shapiro-Wilk (Shapiro and Wilk, 1965) and D’Agostino-Pearson 

(D’Agostino, 1970, 1986; D’Agostino et al., 1990) statistical tests were 

applied to test the assumption of the normality of the distributions of 

the data from the original N-element samples. Homoscedasticity for 

coherent variables (e.g., carbon concentration in the different plant 

organs) was verified with the Bartlett’s test (Bartlett, 1937) and, in 

case of departures from normality, with the Levene test (Levene, 1960) 

which is less sensitive than Bartlett’s to normality despite Bartlett’s 

better performance (Snedecor and Cochran, 1967). 

2.4 Materials and methods2.4 Materials and methods2.4 Materials and methods2.4 Materials and methods    

Preliminary analysis 

 

Panicles carbon concentration, plant density and SNC showed 

deviation from normality, whereas homoscedasticity was not verified 

for practically all the variables with a coherent meaning (e.g., total, 

leaves, stems, panicle biomass) (Tables 2.1.a and 2.1.b). Variances of 

total plant, leaves, stems and panicles carbon concentrations were 

considered homogeneous according to the Levene test. 
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Tab. 2.1.a: Features of the pre-samplings carried out for the different plant 
related variables. Shapiro-Wilk normality test was carried out for all the 
variables; Bartlett homoscedasticity test was carried out among the groups of 
coherent variables. Levene homoscedasticity test was carried out in case of 
deviation from normality. 

 

 

 

Tab. 2.1.b: Features of the pre-samplings carried out for the variables related 
to soil and soil microbial activity. Shapiro-Wilk normality test was carried out 
for all the variables; Bartlett homoscedasticity test was carried out among the 
groups of coherent variables. Levene homoscedasticity test was carried out in 
case of deviation from normality. 

 

 

Number of           
pre-sampling                    

units *
Units Mean

Standard 
deviation Normality † Homoscedasticity ‡

Total (aboveground) 54 kg ha-1 10250.36 2494.73
Leaves 54 kg ha-1 858.94 269.61
Stems 54 kg ha-1 6181.47 1509.92
Panicles 54 kg ha-1 3209.95 799.20
Total (aboveground) 54 % 0.72 0.09
Leaves 54 % 0.66 0.11
Stems 54 % 0.49 0.09
Panicles 54 % 1.16 0.14
Total (aboveground) 54 % 42.02 0.37
Leaves 54 % 40.67 0.50
Stems 54 % 40.99 0.51
Panicles 54 % 44.36 0.58 S- (P < 0.10)

54 % 14.78 7.01 -
20 plants m-2 478.00 114.00 S- (P < 0.05) -

*: number of plants for variables describing plant features; number of determinations for plant density
†: S- indicates not normal according to the Shapiro-Wilk test; blanks indicate normality
‡: B- and L- indicate not homoscedastic respectively according to the Bartlett and Levene test. The latter is used in case of deviation 
     from normality; L+ indicates homoscedastic according to the Levene test; - indicates that homoscedasticity tests were not performed
     since the variable was not belonging to a group of coherent variables

Variable

Biomass

Nitrogen 
concentration

Carbon 
concentration

Spikelet sterility
Plant density

B-

B-

B-, L+

Number of            
pre-sampling             

units *
Units Mean

Standard 
deviation Normality † Homoscedasticity ‡

9 mg CO2 g DM-1 25 day-1 22.49 4.23 -

9 kg N-NO3
- ha-1 2.86 1.36

9 kg N-NH4
+ ha-1 3.53 0.94

9 % 1.42 0.12
9 % 0.13 0.01 S- (P < 0.10)
9 % 2.45 0.20 -
9 % 41.69 1.99 -
9 - 5.69 0.12
9 - 4.62 0.14

Sand 9 % 39.46 5.97
Clay 9 % 17.18 0.97
Silt 9 % 43.36 5.48

*: aggregated samples (four 125 cm3 sub-samples)
†: S- indicates not normal according to the Shapiro-Wilk test; blanks indicate normality
‡: B- and L- indicate not homoscedastic respectively according to the Bartlett and Levene test. The latter is used in case of deviation 
     from normality; L+ indicates homoscedastic according to the Levene test; - indicates that homoscedasticity tests were not performed
     since the variable was not belonging to a group of coherent variables

Texture

Variable

Soil organic matter
Water holding capacity
pH (H2O)

pH (KCl)

N-NO3 concentration

N-NH4 concentration

Total carbon concentration
Total nitrogen concentration

B-

B-

Soil microbial activity

B-

B-, L-
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Plant-related variables 

 

Higher sample sizes tended to be associated with carbon concentration 

variables; whereas, lower sample sizes were associated with plant 

density, spikelet sterility, and biomass variables. Among biomass-

related variables, leaves presented the highest variability, probably 

due to senescence phenomena and loss of the oldest leaves in the last 

part of the crop cycle and during sampling procedures (Figure 2.1.a). 

 

Fig. 2.1.a: Sample sizes obtained for the plant related variables. 

This effect disappears when considering the variability of total 

biomass because of the low relative weight of leaves compared to the 

other plant organs (see Table 2.1.a). Lower sample size values for 

panicles nitrogen concentration with respect to the other plant organs 
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Nitrogen concentration - Panicles
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Carbon concentration - Leaves

Carbon concentration - Stems

Carbon concentration - Panicles

Spikelet sterility

Plant density

Sample size (number of plants)
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is probably due to translocation during the grain filling and ripening 

phases. Nitrogen translocation processes are characterized by a single 

sink (grains) and by multiple sources, with leaf blades playing a major 

role, followed by stems and leaf sheaths (Mae and Ohira, 1981). 

Differences in nitrogen translocation efficiencies from different plant 

organs could be modulated according to nitrogen availability and 

uptake rates (driven by microscale phenomena) before anthesis, when 

most of the nitrogen uptake in rice plants occurs (Ntanos and 

Koutroubas, 2002), and to conditions experienced during the grain 

filling. According to this hypothesis, the variability in the sink 

nitrogen concentration at maturity would be lower than that of the 

sources. 

The highest differences were observed in the sample sizes for the 

carbon concentration in the different plant organs. A possible 

explanation is related to their maintenance respiration rates. 

According to Van Diepen et al. (1988), relative maintenance 

respiration rates (kg CH2O kg-1 day-1) in leaves are about 30% higher 

than in stems and almost 7 times that of grains. For all these plant 

organs, respiration rate is strongly dependent on temperature. 

According to the morphology of the canopy and to the non-

homogeneity of the plant density, leaves belonging to different plants 

can be exposed to different micrometeorological conditions (Uchijima, 

1976). Even small differences in temperature exposure among plants 

can have an impact in modulating the high leaves’ maintenance 

respiration rates, affecting the final variability in leaves carbon 

concentration. This effect can be even clearer when the field is not 

perfectly leveled, when water pools persist during drying events. Even 
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a few centimeters of water can affect the vertical thermal profile 

(Confalonieri et al., 2005), generating variability between the plants 

growing in pools and those growing where the field is already dried. 

Soil variables 

 

The variability in sample size for soil related variables is lower than 

the one discussed for plant variables (Figure 2.1.b). 

 

Fig. 2.1.b: Sample sizes obtained for the soil variables. 

Sample size is 5 in 60% of the cases and 6 in the other ones. The 

definition of a sampling unit consisting in an aggregate sample of 4 

sub-samples allowed surely capturing a significant amount of the total 

variance in the aggregate sample. The resulting low variability among 

3 4 5 6 7

Soil microbial activity

N-NO3 concentration

N-NH4 concentration

Total carbon concentration

Total nitrogen concentration

Soil organic matter

Water holding capacity

pH (H2O)

pH (KCl)

Texture - Sand

Texture - Clay

Texture - Silt

Sample size (aggregated sample of four 125 cm3 sub-samples)
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aggregated soil samples is able to explain the low and homogeneous 

sample sizes obtained for soil variables. 

Moreover the presence of floodwater for most of the crop cycle’s days 

represents a kind of buffer for the physical and biochemical 

environment, thus reducing the spatial variability (e.g., the elements 

transformation rates). 

2.5 Conclusions2.5 Conclusions2.5 Conclusions2.5 Conclusions    
    
Following a study where rice aboveground biomass sample size 

variability was discussed under different management conditions and 

different development stages (Confalonieri et al., 2006a), we analyzed 

here the sample size variability for different variables describing 

plant, soil and microbial activity under a standard rice management 

for European conditions. 

In many cases, the statistical assumptions (normality and 

homoscedasticity) required by classic procedures in sample size 

determination based on t-distribution were not met. Moreover, the t-

distribution methods require as input the maximum acceptable error 

(difference between sample and population means), which in many 

cases cannot be easily identified, since it varies according (i) to 

biophysical factors which could change from an experimental field (or 

situation) to another and (ii) to the resources for carrying out the 

experimentation (Confalonieri, 2004). Consequently, a re-sampling 

based method was used for sample size determination. In general, 

sample size values of plant features were higher than those estimated 

for soil related variables. Among plant variables, whose sample size 

ranges between 15 and 27 plants, sample size for carbon concentration 
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in the different plant organs presented the highest variability. For soil, 

sample sizes are similar for variables describing biochemical and 

physical aspects and microbial activity. 

This work confirmed the need of carrying out pre-samplings aiming at 

sample size determination to guarantee the representativeness of the 

measurements. In a previous study, Confalonieri et al. (2006b) 

underlined the importance of sample size determination for 

aboveground biomass under different management conditions, sown 

varieties, and development stages. Here, the importance of 

determining specific sample sizes also for the different variables 

describing a rice-based cropping system has been demonstrated. 

Besides these theoretical considerations, this paper could be used as 

support for identifying suitable sample sizes for the variables 

analyzed in case of lack of resources for extensive pre-sampling 

investigations. 
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3.1 3.1 3.1 3.1 AbstractAbstractAbstractAbstract    
    
Rice is the staple food for about one-half of the world population. 

Although global production has more than doubled in the last 40 years, 

food security problems still persist and need to be managed basing on 

early and reliable forecasting activities. The most advanced crop yield 

forecasting systems are based on simulation models. However, 

examples of operational systems implementing models which are 

suitable for reproducing the peculiarities of paddy rice, especially at 

small scales, are missing. The rice model WARM is used within the crop 

yield forecasting system of the European Commission. In this article 

we evaluated the WARM model for the simulation of rice growth 

under flooded and unflooded conditions in China and Italy. WARM 

model simulates crop growth and development, floodwater effect on 

vertical thermal profile, blast disease, cold-shock induced spikelet 

sterility during the pre-flowering period and hydrological peculiarities 

of paddy soils. We identified most relevant model parameters through 

sensitivity analyses carried out using the Sobol’ method and then 

calibrated using the simplex algorithm. Data coming from 11 

published experiments, covering 13 locations and 10 years are used. 

Two groups of rice varieties were identified for each country. Our 

results show that the model was able to reproduce rice growth in both 

the countries: average relative root mean square error calculated on 

aboveground biomass curves was 21.9 % for the calibration and 23.6 % 

for validation. The parameters of the linear regression equation 

between measured and simulated values were always satisfactory: 

intercept and slope were always close to their optima and R2 was 

always higher than 0.79. For some of the combinations of country and 
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simulated variable, the indices of agreement calculated for the 

validation datasets were better than the corresponding ones computed 

at the end of the calibration, indirectly proving the robustness of the 

modelling approach. The WARM robustness and accuracy, combined 

with the low requirements in terms of inputs and the implementation 

of modules for reproducing biophysical processes strongly influencing 

the year-to-year yield variation, make the model suitable for 

forecasting rice yields at regional, national and international scales. 

3.2 Introduct3.2 Introduct3.2 Introduct3.2 Introductionionionion    
    
Rice is the most important food crop worldwide, representing the 

staple food for more than three billion people (Confalonieri and 

Bocchi, 2005). Since problems about food security still persist in many 

areas of the world where rice is one of the most important sources of 

dietary calories, robust and reliable tools for early forecasting rice 

yields are needed. This is especially true since the frequency of 

extreme weather events, able to decidedly affect final yield, are 

forecasted to increase (IPCC, 2007). 

Crop models are increasingly used since the 70s to analyze the 

interactions between plants and factors driving their growth like 

weather, soil, and management practices. In the first years the activity 

was mainly focused in formalizing the knowledge on different 

physiological processes into integrated systems. This led to very 

detailed simulation models of physiological processes and did draw 

attention to gaps in understanding (Monteith, 1996). Examples of 

these models are those belonging to the SUCROS family of models, 

described and reviewed by Van Ittersum et al. (2003). Starting from 
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the mid-80s, crop modellers focused their attention in developing 

management oriented models suitable for field decision-making, e.g. 

EPIC (Williams et al., 1984). In the last years, the technological 

development has favoured the small scale application of crop models, 

with the aim of monitoring crops conditions (Bezuidenhout and 

Singels, 2007) or evaluating the impact of different management 

practices or climatic scenarios (Olesen et al., 2007). In this context, one 

of the most important applications is the use of crop models for yield 

forecasting at regional, national and international scales (Bannayan 

and Crout, 1999). 

The Joint Research Centre of the European Commission developed the 

MARS (Monitoring Agriculture with Remote Sensing) Crop Yield 

Forecasting System in the early nineties with the aim of providing 

timely, independent and objective yield estimates to support the 

Common Agricultural Policy (Genovese et al., 2001). The system is 

based on low-resolution satellite data, on historical series of statistics 

on yields and acreages, and on the Crop Growth Monitoring System 

(CGMS) which in turn is currently based on three crop models: 

WOFOST (Van Keulen and Wolf, 1986) as generic crop simulator, 

WARM (Confalonieri et al., 2006a) for rice and LINGRA (Rodriguez et 

al., 1999) for pastures. LINGRA and WARM were implemented to allow 

CGMS to take into account the peculiarities of pastures and flooded 

rice systems. 

The WARM model (Confalonieri et al., 2006a) was developed in the last 

three years by an open group of researchers aiming at developing a 

coherent model for rice at mid-latitudes. Compared to the rice models 

already available (e.g. CERES-Rice, Singh et al., 1993a; ORYZA, Kropff 
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et al., 1994), WARM takes into account some relevant processes 

influencing the final yield usually not considered (e.g. 

micrometeorological peculiarities of paddy fields, diseases) and adopts 

a consistent level of complexity in the reproduction of the biophysical 

processes involved. There are no processes modeled in a very detailed 

way and others which are reproduced using rough approaches acting 

on the same variables. Moreover, all parameters describing cultivars 

morphological and physiological features have a biophysical meaning 

and can be directly measured or derived from measured data. The 

peculiarity of rice-based cropping system had been analyzed and led to 

specific modules for the simulation of floodwater effect on vertical 

thermal profile (Confalonieri et al., 2005), the simulation of blast 

disease, the simulation of the typical hydrology of paddy soils and the 

simulation of the yield losses due to cold-shocks during the pre-

flowering period. The model has proven to be suitable and robust for 

small scale simulations, where information for parameterizing and 

feeding models is characterized by a high degree of uncertainty (Wit et 

al., 2005). WARM was recently included in APES (Agricultural 

Production and Externalities Simulator – 

http://www.apesimulator.org), the modular, multi-model system being 

developed within the EU Sixth Framework Research Programme 

SEAMLESS (http://www.seamless-ip.org/). 

With 218000 ha Italy is the largest European producer of rice, 

followed by Spain with less than half of the area (96000). Portugal, 

Greece and France have around 20000 ha each (EUROSTAT New 

Cronos database; http://ec.europa.eu/eurostat). Although these figures 
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place European grown rice as a secondary crop for this continent, at 

world level it is the most important food crop (Solh, 2005). 

We present the results of (i) a Monte Carlo based sensitivity analysis of 

WARM for China and Italy and (ii) the calibration and validation of two 

sets of model parameters (representing two groups of varieties) for 

each of the two countries. 

3.3 Materials and methods3.3 Materials and methods3.3 Materials and methods3.3 Materials and methods    

3.3.1 Experimental data3.3.1 Experimental data3.3.1 Experimental data3.3.1 Experimental data    

 

Data used for this study include 11 datasets collected in field 

experiments carried out between 1999 and 2002 in China and between 

1989 and 2004 in Italy under flooded and under unflooded conditions 

(Table 3.1 and Figure 3.1). 

 

 

 

 

 

 

 

 

 



61 
 

Tab. 3.1. Data sets used for model calibration and validation. *: aboveground 
biomass; **: leaf area index; §: flooded at the 3rd leaf stage 

 

 

Experiment 
no.

Country Location Latitude, 
Longitude

Years Measured 
variables

Variety Sowing 
date

Variety 
group

Calibration Flooded

HD297 May 16 ChE
JD305 April 25 ChE X
HD297 May 15 ChE
JD305 April 20 ChE X

2001 May 15 ChL X
2002 May 11 ChL X X

X X

1999 AGB April 18 ChL X
2000 AGB, LAI April 10 ChL X X

5 Italy Opera
45° 22' N,             
9° 12' E

2004 AGB, LAI Gladio
May 24 ItI X X

Vignate
45° 29' N,                  
9° 22' E

2002 AGB, LAI Sillaro
ItI X X

Opera
45° 22' N,              
9° 12' E

2002 AGB, LAI Thaibonnet
ItI X

7 Italy
Velezzo 
Lomellina

45° 9' N,                   
8° 44' E

1999 AGB Thaibonnet April 1
ItI X §

Castello 
d'Agogna

45° 14' N,                
8° 41' E

1996 May 8
ItJ X

Mortara
45° 14' N,                 
8° 41' E

1996 May 7
ItJ X X

1989 May 8 ItJ X
1990 May 10 ItJ X X

10 Italy
Gudo 
Visconti

45° 22' N,                       
9° 00' E

1990 AGB Cripto April 14
ItJ X

1994 April 29 ItJ X
1995 May 10 ItJ X X

April 29

Jiangpu

2001 AGB, LAI XD90247

2You725

Gaozhai
34° 02' N,             
114° 51' E

May 9

Tuanlin

ChE

6

AGB CriptoItaly Vercelli
45° 19' N,                          
8° 25' E

9

8 Italy DragoAGB

China

China

China

40° 02' N,            
116° 10' E

2002

AGB, LAI

Italy

Changping1

2

4

Wuxiangjing9

AGB*, LAI**

30° 52' N,                
112° 11' E

2001

3 China

32° 24' N,                   
118° 46' E

ArieteAGB11 Italy
Castello 
d'Agogna

45° 14' N,                     
8° 41' E
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Fig. 3.1. Locations were experiments used for calibration and validation were 
carried out. 

In any case, soil moisture was never limiting crop growth: the only 

biophysical effect in the absence of flooding was the absence of the 

floodwater effect on temperature. These conditions are suitable for 

evaluating a rice model looking at situations where water saving 

management could play a major role.  

Experiment no. 1 was carried out in Changping (China, Beijing) and is 

described by Bouman et al. (2006). Two rice varieties were grown 

under aerobic conditions and five irrigation water treatments in order 

to assess their performance using a water saving management. During 

the Jiangpu experiment (no. 2; China, Nanjing; Jing et al., 2007), long 

cycle japonica rice varieties were grown under different nitrogen 
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fertilization treatments to explore different options to combine high 

yields with high nitrogen use efficiencies in irrigated rice. Fields were 

submerged during the entire growing season. Experiment no. 3 was 

carried out in Gaozhai Village (China, Henan; Feng et al., 2007). Three 

water treatments were compared: continuous flooding in puddled soil, 

alternate wetting and drying in puddled soil and flush irrigation in 

non-puddled aerobic soil. All treatments received 180 kg N ha-1, 

applied in three events. The aim of Experiment no. 4, carried out in 

Tuanlin (China, Hubei), was to evaluate the effectiveness of alternate 

submerged-non submerged management in sub-tropical areas (Belder 

et al., 2004). Rice received 180 kg N ha-1. Experiment no. 5, 6, 7, and 8 

were carried out in the Po Valley (Northern Italy) and are described by 

Confalonieri and Bocchi (2005) and Confalonieri et al. (2006b). During 

these experiments, rice was grown under flooded conditions and 

different levels of nitrogen fertilizer split in two or three events. 

During experiments no. 9, 10, and 11 (Confalonieri and Bocchi, 2005), 

different varieties were grown; Japonica type with different cycle 

lengths in experiments no. 9 and 10; Indica and Japonica type varieties 

in experiment no. 11. In the experiments where nitrogen was not one 

of the factors, the amount distributed was adequate to assure 

unlimited supply of this nutrient. Where different nitrogen amounts 

were applied, data from the treatment assuring non-limiting 

conditions were used. In case of unflooded conditions, only the 

treatments where water was not a limiting factor were used. The same 

was done in case different water treatments were compared. In any 

case, plots were kept free of weeds and received an optimal control 

against pests and diseases. 
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For experiments no. 1, 2, 3, 4, ECMWF (European Centre for Medium-

Range Weather Forecast; http://www.ecmwf.int/) meteorological data 

were used. Data resolution is one degree latitude × one degree 

longitude. Weather data for experiments no. 5 and 6 were collected 

with a floating micrometeorological weather station placed inside the 

field (Confalonieri et al., 2005). For the simulations related to 

experiments no. 7, 8, 9, 10, 11, weather data were collected with 

standard automatic weather stations installed near the fields. 

3.3.2 Simulation model3.3.2 Simulation model3.3.2 Simulation model3.3.2 Simulation model    

    

Temperature is one of the most important driving variables for the 

simulation of crop growth and development. In paddy rice systems, 

this meteorological variable is greatly influenced by the presence of 

floodwater. In WARM, the micrometeorological model TRIS proposed 

by Confalonieri et al. (2005) is adopted to take into account the 

floodwater effect on the vertical thermal profile. TRIS generates 

hourly and daily temperatures for both the water body and the air 

layers above the air-water interface (18 layers of 0.1 m each). In 

particular, the temperatures generated by TRIS at the meristematic 

apex height are used for simulating the processes related to plant 

development and spikelet sterility. Average canopy temperature is 

used for simulating thermal limitation to photosynthesis and leaves 

aging. 

For crop development, the thermal time accumulated between a base 

temperature and a cut-off temperature is computed. The accumulated 

thermal time can be optionally corrected with a factor accounting for 

photoperiod. Base and cut-off temperatures can be set to different 
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values for the periods sowing – emergence and emergence – 

physiological maturity. Similar to SUCROS-derived models, 

development stages are standardized by converting growing degrees 

days (GDDs) into a numerical code (DVS) from 0.00 to 2.00 

(respectively, emergence and physiological maturity, with DVS=1.00 

corresponding to flowering), useful for synchronizing the simulation 

of different processes. There variables are obtained as follows (Eqs. 1 

and 2), respectively for the periods emergence-flowering and 

flowering-physiological maturity: 

 
GDD

)GDD-(GDD
DVS

flo

emcum=       (1) 

 
GDD

)GDD-GDD-(GDD1
DVS

mat

floemcum+=     (2) 

where GDDcum (°C-day) are the cumulated GDDs, GDDem (°C-day) are 

the GDDs required to reach emergence, GDDflo (°C-day) are the GDDs 

required to reach flowering, and GDDmat (°C-day) are the GDDs 

required to reach physiological maturity. 

The net photosynthesis rate is simulated using a radiation use 

efficiency (RUE)-based approach (Eq. 3): 

( )LAIk
act eRadRUEAGB ⋅−−⋅⋅⋅= 15.0     (3) 

where AGB (kg m-2 d-1) is the daily accumulated aboveground biomass, 

RUEact (kg MJ-1) is the actual RUE, Rad (MJ m-2 d-1) is the daily global 

solar radiation (with 0.5 Rad being an estimate for PAR), (1-e-kLAI) is the 

fraction of PAR intercepted by the canopy, k is the extinction 
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coefficient for PAR. RUEact is derived from potential RUE (RUEmax, 

kg MJ-1) crop parameter, using Eq. 4: 

FCOFDVSFRadTRUERUEact _2__limmax ⋅⋅⋅⋅=   (4) 

where Tlim, Rad_F and DVS_F are unitless factors in the range 0 

(maximum limitation) – 1 (no limitation) accounting for temperature 

limitations, saturation of the enzymatic chains, and senescence 

phenomena, respectively. CO2_F (unitless) accounts for the effect of 

atmospheric CO2 concentration on RUE according to an approach 

derived by Stöckle et al. (1992). Other factors, accounting for nitrogen 

supply and occurrence of diseases, also play a role in affecting RUE in 

WARM. They will not be documented here because not of interest for 

this work, carried out at potential production level. 

The factor accounting for thermal limitation to photosynthesis (Tlim) 

is calculated using a beta function (Eq. 5): 
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where Tavg (°C) is the mean daily air temperature; Tb (°C), Topt (°C) and 

Tmax (°C) are respectively the minimum, optimum and maximum daily 

mean temperature for growth; C is an empiric parameter set to 1.8 to 

make the beta distribution function assume the value of 0.5 when Tavg 

is the average of Tb and Topt. The factors accounting for saturation of 

the enzymatic chains involved with photosynthesis (Rad_F) and for the 

effect of senescence (DVS_F) are calculated using the following 

functions (Eqs. 6 and 7): 
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where DVS is the development stage numerical code. 

AGB accumulated each day is assigned to leaves using a parabolic 

function (Eq. 8) which assumes the maximum value (input parameter 

RipL0) at emergence and zero at flowering: 

( )



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
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<+⋅−⋅
=
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100 2
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         (8) 

where LeavesAGBday (kg m-2 d-1) is the AGB partitioned daily to leaves 

and AGBday (kg m-2 d-1) is the AGB accumulated in the day. 

AGB partitioning to panicles starts at the panicle initiation stage (PI) 

and is assumed as maximum at the beginning of the ripening phase, 

when all the daily accumulated AGB is partitioned to panicles. Like for 

the allocation of AGB to leaves, a parabolic function is used (Eq. 9): 
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         (9) 

where PanicleAGBday (kg m-2 d-1) is the AGB partitioned daily to 

panicles. DVS=0.6 represents PI, DVS=1.5 is the beginning of the 

ripening phase. 

Stems biomass is computed by subtracting panicles and leaves 

biomasses to total AGB. 

A daily factor accounting for spikelet sterility due to cold shocks 

during the period between PI and heading is calculated using Eq. 10: 
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         (10) 

 

where Tthresh (°C) is the threshold temperature below which cold-

induced sterility damages are caused, Th (°C) are the hourly 

temperatures (generated from the daily inputs according to Denison 

and Loomis, 1989), DVS11 is the DVS of the 11th day before heading 
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(DVS=0.8), γ and δ are coefficients used to discriminate between 

varieties sensitive for few or many days around the 11th before 

heading, which corresponds to the middle of the period PI–heading. 

The integral of SterilityF is used to reduce PanicleAGBday. 

Leaf area index (LAI, m2 m-2) is computed multiplying the leaves 

biomass by the specific leaf area (SLA, m2 kg-1), the latter varying 

according to the development stage (Eq. 11): 
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  (11) 

where SLAini and SLAtill (m2 kg-1) are input crop parameters identifying 

the SLA at emergence and mid-tillering stages (DVS=0.35). 

Each day, leaf senescence is calculated by subtracting the dead LAI to 

the total one. Production of daily green leaf units starts at emergence 

and each leaf unit will cease to live once a threshold amount of degree-

days (crop parameter LeafLife, °C-day) is accumulated. The crop 

phenology model is coupled to the simulation of leaf area units’ life 

through a correspondence between degree-days and leaf units 

produced in each day after emergence. 

3.3.3 Sensitivity analysis3.3.3 Sensitivity analysis3.3.3 Sensitivity analysis3.3.3 Sensitivity analysis    

    

Sensitivity analysis was carried out on the model parameters involved 

in crop growth. The analysis was based on the model output 

aboveground biomass at physiological maturity since it is a synthetic 

representation of the culmination of many biophysical processes and 
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it is influenced by all crop parameters. The variation of aboveground 

biomass in response to changes in crop parameters values was 

investigated using the Sobol’ method (Sobol’, 1993) as made available 

in the SimLab library (http://simlab.jrc.ec.europa.eu/) via the tool 

integrated in the WARM modelling environment. 

The method of Sobol’ is a variance-based global sensitivity analysis 

method. This method assumes that the function f(x1,x2,…,xk), i.e. the 

model, is assumed to be defined in the k-dimensional unit cube: 

( )10,...10,10| 21 ≤≤≤≤≤≤= k
k xxxXK     (12) 

where k is the number of factors. 

According to Sobol’ (1993), f can always be decomposed into summands 

of increasing dimension. The total variance D of f(X) can be written as: 

∫ −=
kK

fdXXfD 2
0

2 )(       (13) 

while each partial variance, corresponding to a generic term fi1…is (all 

the fi1…is are orthogonal) can be written as: 

( ) isiisiisiisi dxdxxxfD ...,...,... 11

1

0

1

0

2
...1...1 ∫ ∫=     (14) 

where 1 ≤ i1 < … < is ≤ k and s = 1, …, k. 

All the quantities f0, D, Di1…is can be computed by multidimensional 

Monte Carlo integration. Sensitivity estimates of the model 

parameters, which measure the main effect of each individual or 

group of inputs on the model output, as well as all higher-order effects 

that can be attributed to that parameter, are then defined as: 
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Total effects (STi) are also computed for each parameter and are those 

used in this study. 

The Sobol’ method requires the distributions of the different factors in 

order to manage the a-priori knowledge about factors in a more 

effective way. Parameters distributions were retrieved from the 

literature (van Diepen et al., 1988; Kropff et al., 1994; Confalonieri and 

Bocchi, 2005; Boschetti et al., 2006), as described in detail by 

Confalonieri et al. (2006a). The Shapiro-Wilk test allowed to never 

rejecting the hypothesis of normality of the distributions. Average and 

standard deviation were: 3 and 0.5 for RUEmax; 0.5 and 0.04 for k; 12 

and 0.6 for Tb; 28 and 2 for Topt; 42 and 2 for Tmax; 0.01 and 0.005 for 

LAIini; 27 and 2 for SLAini; 18 and 3 for SLAtill; 0.7 and 0.1 for RipL0; 700 

and 80 for LeafLife; 100 and 20 for Hmax. 

For each location, the sample of parameters’ combinations, and 

therefore the number of simulations run using average weather data, 

was 12288. 

3.3.4 Model parameterization and validation3.3.4 Model parameterization and validation3.3.4 Model parameterization and validation3.3.4 Model parameterization and validation    

    

WARM version 1.9.6 (9 August 2007; download at: 

http://www.robertoconfalonieri.it/software_download.htm) was used. 

Both for China and Italy, two sets of crop parameters were calibrated 

and validated: Chinese early and late varieties, respectively ChE and 

ChL, and Italian Indica and Japonica type varieties, respectively ItI and 
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ItJ. Table 3.1 shows the datasets used for calibrating and validating the 

four groups of varieties. 

Parameters identified as the most relevant by the sensitivity analysis 

were calibrated; the others were left to their default values. For the 

groups ChE, ItI and ItJ, measured RUE values were available; 

measurements for the parameters SLAini and SLAtill were available for 

the groups ItI and ItJ. In these cases, measured values were used for 

the parameters. Information about parameters and their sources of 

information are shown in Table 3.2. Calibration was carried out using 

the automatic tool integrated in the WARM environment based on the 

evolutionary shuffled simplex (Duan et al., 1992). This evolution of the 

standard simplex method is based on (i) running several simplexes 

randomizing their starting points; (ii) eliminating a certain percentage 

of simplexes, with a probability inversely proportional to the value of 

the objective function; (iii) introducing a “mutation”, substituting a 

new random vertex to a simplex vertex that tried to move outside a 

defined physical domain; (iv) combining the remaining simplexes 

using vertices from different simplexes, imposing that vertices with 

good objective function have a higher probability to be selected. The 

result is something similar to a genetic algorithm. The evolutionary 

shuffled simplex has been used since it demonstrated, also with the 

WARM model, to be effective in reaching the global minimum, 

avoiding the risk of finding local ones (Acutis and Confalonieri, 2006). 
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Table 3.2. Parameters values and sources of information (C: calibrated 
parameters; L: literature; E: local experience; M: measured; D: default). ChE 
and ChL represent the sets of parameters for, respectively, early and late 
Chinese varieties; ItI and ItJ the parameters for Indica- and Japonica-type 
varieties grown in Italy 

 

 

 

The agreement between measured and simulated values was 

quantified by using the following indices: relative root mean squared 

error (RRMSE, Eq. 16, minimum and optimum=0%; maximum +∞), the 

modelling efficiency (EF, Eq. 17, -∞ ÷  1, optimum=1, if positive, 

indicates that the model is a better predictor than the average of 

measured values), the coefficient of residual mass (CRM, Eq. 18, 0-1, 

optimum=0, if positive indicates model underestimation) and the 

parameters of the linear regression equation between observed and 

predicted values. 

Parameter Units Description
ChE ChL ItI ItJ ChE ChL ItI ItJ

TbaseDem °C 12 11 base T for devel. before emergence L L E, L L
TmaxDem °C max. T for devel. before emergence
GDDem °C-days 100 120 GDDs from sowing to emergence
TbaseD °C base T for devel. before emergence
TmaxD °C max. T for devel. before emergence
GDDem-fl °C-days 1300 1495 800 850 GDDs from emergence to flowering
GDDfl-mat °C-days 380 555 430 500 GDDs from flowering to maturity

RUEmax g MJ-1 1.96 2.00 3.20 2.60 radiation use efficiency M C M M
k - extinction coeff. for solar radiation
Tb °C base T for growth
Topt °C 28 26 optimum T for growth C C L, C L, C
Tmax °C maximum T for growth L L E, L E, L

LAI ini m2 m-2 0.020 0.010 initial leaf area index

SLAini m2 kg-1 29 28 specific leaf area at emergence D D M M

SLAtill m2 kg-1 18 20 19 18 specific leaf area end tillering D C M M
RipL0 - 0.7 0.8 0.6 0.7 AGB partition to leaves at emerg. C C C D
LeafLife °C-days 900 1200 800 600 leaf duration
ApexHeight cm maximum panicle height D D E E
kc - kc full canopy
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Di is the difference between Si and Mi, with Si and Mi being 

respectively the ith simulated and the ith measured values, n is the 

number of pairs Si-Mi, S  and M are the averages of simulated and 

measured values. 

Within each group of varieties, the same values for the parameters 

involved in growing degree days accumulation and thermal limitation 

to photosynthesis were used both for flooded and unflooded 

experiments. In order to verify the presence of possible differences in 

model performances under flooded and unflooded conditions due to 

the simulation of the floodwater effect on temperatures, we compared 

the means of each index of agreement. For both the variables 

(aboveground biomass and leaf area index) and for each index, the two 

groups to compare were defined by including all the metrics calculated 

for calibration and validation: the factor was the type of irrigation. F-

ratio and Student-t tests were performed to investigate if variances 
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and means between groups were similar. When the F-test revealed 

significant differences (p<0.05), a Student-t test assuming unequal 

variances was performed, using the Welch-Satterthwaite equation 

(Satterthwaite, 1946; Welch, 1947) to calculate an approximation to 

the effective degrees of freedom. Otherwise, two-sided Student-t tests 

assuming equal variances were used to investigate if the differences 

between groups were significant. 

3.4 Results and discussion3.4 Results and discussion3.4 Results and discussion3.4 Results and discussion    
    
The aim of the study was to evaluate the adequacy of the WARM model 

for simulating rice in China and Italy. We used data coming from four 

field experiments carried out in China between 1999 and 2002 and 

seven experiments conducted in Italy between 1989 and 2004. The 

data used, collected under optimal conditions for water and nitrogen 

availability, were split in two independent datasets for the calibration 

and validation activities. 

3.4.1 Sensitivity analysis3.4.1 Sensitivity analysis3.4.1 Sensitivity analysis3.4.1 Sensitivity analysis    

    

Figure 3.2 compares the sensitivity analysis results for North-Italian 

conditions to those obtained for the four Chinese locations under 

study. RUEmax is always ranked first. Averaging results for the four 

Chinese sites, the main difference between sensitivity indices 

computed for the two countries is that Topt is ranked second in Italy 

whereas it appears less important than LAIini and RipL0 in China. Topt is 

considered more relevant with increasing latitude: within Chinese 

datasets, it is ranked fourth at latitudes between 30° 52’ N and 34° 02’ 

N, third at latitude of 40° 02’ N; it is ranked second in Italy, where 

latitudes is slightly higher than 45° N. The reason is related to the S-
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shaped function used for modelling the photosynthesis response to 

temperature (see Eq. 5): temperatures increase with decreasing 

latitude, thus getting closer to Topt and leading Tlim to assume values 

which are in the region of the S-shaped function characterized by a 

plateau. This is translated in small variations in the output and 

therefore to decreasing relevance for decreasing latitude. Sensitivity 

analyses carried out for all the sites under study using the Sobol’ 

method allowed to identify the parameters RUEmax, LAIini, Topt, RipL0, 

and k as the most relevant. Therefore, these parameters were those on 

which we concentrated during the calibration. 

 

Figure 3.2. Results of the sensitivity analyses carried out using the Sobol’ 
method: total order effects for the WARM parameters involved with crop 
growth. Grey, white, striped, dotted and black series refer, respectively, to 
Tuanlin, Changping, Gaozhai, Jiangpu and Italy. Most relevant parameters are 
those involved with radiation use efficiency and its thermal limitation 
(RUEmax and Topt), leaf area expansion at early stages (LAIini and RipL0) and 
light penetration into the canopy (k). Topt decreases its relevance with 
decreasing latitude, because lower latitudes correspond to more suitable 
thermal conditions for the crop. 
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3.4.2 Calibration of crop model parameters3.4.2 Calibration of crop model parameters3.4.2 Calibration of crop model parameters3.4.2 Calibration of crop model parameters    

    

Parameters values with source of information or after calibration are 

shown in Table 3.2. Base and optimum temperatures are in the range 

of those reported, respectively, by Sié et al. (1998) and Casanova et al. 

(1998). Maximum temperatures are coherent with those used by Mall 

and Aggarwal (2002) for the Ceres-rice and Oryza1 models. Similar 

values were also used by Confalonieri and Bocchi (2005) for the 

CropSyst model. Measured values of RUEmax were derived from 

Bouman et al. (2006) for the group of varieties ChE and by Boschetti et 

al. (2006) for ItI and ItJ. Although the values measured by these 

authors could appear quite spread, they fall within the range of those 

published (e.g. Kiniry et al., 2001; Campbell et al., 2001). The value of 

0.5 for k is consistent with what reported by other authors (e.g. 

Dingkuhn et al., 1999). The values of SLAini and SLAtill are within the 

range of those measured by Dingkuhn et al. (1998) and by Boschetti et 

al. (2006). Although not identified as relevant by the sensitivity 

analysis, SLAtill and LeafLife were calibrated to allow the model 

reproducing measured leaf area index curves. 

The agreement between observed and simulated aboveground biomass 

values after calibration is shown in Figure 3.3 and Table 3.3. In general 

WARM presents a reasonable accuracy in simulating aboveground 

biomass accumulation. It is possible to notice, for some of the Chinese 

datasets, the tendency in slightly overestimating biomass values, 

especially in the early varieties (Changping 2001 and Gaozhai 2000 

datasets). This is confirmed by the fitting indices, shown in Table 3.3, 

where coefficient of residual mass is negative for the two datasets. 

Whereas the relative root mean square error values obtained for the 
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late varieties are below 20%, the others, though presenting satisfying 

results, are lightly higher. The same considerations are valid for the 

modelling efficiency. In general the regression parameters are 

satisfactory: slope values are close to one for all simulations. 

Simulated values of aboveground biomass for the Italian datasets 

present a good agreement with measured ones in almost all the 

situations, with the modelling efficiency constantly above 0.9. The 

agreement between observed and simulated leaf area index values is 

usually lower. This is probably due both to the difficulty of simulating 

the balance between emission and death of green leaf area index units 

before flowering and to the higher errors in leaf area index 

measurements compared to aboveground biomass ones. Although 

daily aboveground biomass accumulation rate depends on absorbed 

radiation and therefore on green leaf area index state, the not 

completely satisfactory simulation of green leaf area index before 

flowering does not significantly affect aboveground biomass 

accumulation because in this phase the canopy is practically closed 

and the interception of radiation can be considered complete. 

Calibrated values for the parameters are within the range of values 

found in the literature and allowed the model to reproduce measured 

data in a satisfactory way, especially the aboveground biomass curves. 
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Table 3.3. Indices of agreement between measured and simulated 
aboveground biomass (AGB; t ha-1) and leaf area index (LAI; m2 m-2) values. *: 
flooded at the 3rd leaf stage. 

 

 

 

 

Variable Flooded RRMSE EF CRM Slope Intercept R2

Country Activity Location Year (%) (t ha-1)

Changping 2001 28.6 0.79 0.04 0.96 0.76 0.79
Changping 2002 35.6 0.77 -0.24 0.93 -1.17 0.88
Gaozhai 2001 X 20.8 0.91 -0.11 0.99 -0.77 0.93
Jiangpu 2002 X 17.1 0.95 0.03 1.26 -1.95 0.99
Tuanlin 2000 15.4 0.96 -0.02 1.01 -0.31 0.96
Changping 2001 34.0 0.57 0.14 1.08 0.38 0.64
Changping 2002 39.7 0.59 -0.15 0.78 0.36 0.70
Gaozhai 2001 X 37.6 0.52 0.24 0.87 1.19 0.73
Jiangpu 2002 X 40.1 0.31 0.24 0.95 1.18 0.56
Tuanlin 2000 28.2 0.87 -0.17 1.28 -2.30 0.97
Changping 2001 28.9 0.69 0.18 0.85 2.77 0.84
Changping 2002 25.7 0.87 -0.03 0.88 0.62 0.88
Gaozhai 2001 15.0 0.95 -0.10 1.02 -0.99 0.97
Jiangpu 2001 X 25.1 0.89 -0.18 0.86 -0.12 0.97
Tuanlin 1999 10.4 0.99 -0.01 1.05 -0.48 0.99
Changping 2001 59.9 0.12 0.26 0.71 2.37 0.34
Changping 2002 45.7 0.46 0.00 0.76 0.83 0.51
Gaozhai 2001 33.8 0.66 0.21 0.93 0.88 0.79
Jiangpu 2001 X 24.4 0.79 -0.03 0.78 0.62 0.86
Opera 2004 X 23.7 0.93 0.07 0.88 0.83 0.96
Vignate 2002 X 17.3 0.92 0.12 1.08 0.46 0.96
Castello d'Agogna 1995 X 19.6 0.95 -0.04 0.90 0.34 0.96
Mortara 1996 X 13.3 0.98 0.06 1.13 -0.53 0.99
Vercelli 1990 X 27.9 0.91 -0.14 0.80 0.57 1.00
Opera 2004 X 22.8 0.91 -0.13 0.96 -0.31 0.94
Vignate 2002 X 47.5 0.81 0.01 1.31 -0.88 0.86
Castello d'Agogna 1996 X 23.1 0.93 0.08 1.22 -0.96 0.98
Gudo Visconti 1990 X 43.1 0.73 -0.33 0.77 -0.09 0.98
Vercelli 1989 X 14.3 0.97 -0.05 0.88 0.59 0.99
Opera 2002 X 14.0 0.96 -0.08 0.88 0.43 0.99
Castello d'Agogna 1994 X 31.7 0.89 -0.24 0.86 -0.30 0.98
Velezzo Lomellina 1999 X* 32.0 0.94 -0.17 0.83 0.12 1.00
Opera 2002 LAI X 56.8 0.68 -0.04 1.17 -0.63 0.70

LAI

AGB

AGB

Italy

Calibration

Validation

Dataset

China

AGB

LAI
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Figure 3.3. Measured (X-axis) and simulated (Y-axis) aboveground biomass 
and leaf area index values after calibration. For the Chinese datasets: black 
triangle, black square, white circle, white square, and black cross refer, 
respectively, to Changping 2001, Changping 2002, Gaozhai 2001 (flooded), 
Jiangpu 2002, and Tuanlin 2000. For Italian datasets: the same symbols refer 
to Opera 2004, Vignate 2002, Castello d’Agogna 1995, Mortara 1996, and 
Vercelli 1990. 
    

3.4.3 Validation of crop model parameters3.4.3 Validation of crop model parameters3.4.3 Validation of crop model parameters3.4.3 Validation of crop model parameters    

    

Figure 3.4 and Table 3.3 show the results of crop parameters test. 

Despite a general slight overestimation, both for China and Italy, 

WARM simulates accurately aboveground biomass values also during 

the validation. For China, as already discussed for the calibration 
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phase, the best values of fitting indices were calculated for the late 

varieties. 

 

Figure 4.3. Measured (X-axis) and simulated (Y-axis) aboveground biomass 
and leaf area index values after validation. For the Chinese datasets: black 
triangle, black square, white circle, white square, and black cross refer, 
respectively, to Changping 2001, Changping 2002, Gaozhai 2001 (unflooded), 
Jiangpu 2001, and Tuanlin 1999. For Italian datasets: the same symbols refer 
to Opera 2002, Velezzo 1999, Castello d’Agogna 1996, Gudo Visconti 1990, and 
Vercelli 1989; the white rhombus refer to Castello d’Agogna 1994. 
 

In general, results obtained for leaf area index simulation reflect the 

problems discussed for the calibration datasets, nonetheless in some 

cases (Gaozhai 2001 and Jiangpu 2001) fitting indices can be 

considered satisfactory also for this variable. Also for the Italian 
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datasets, measured aboveground biomass values are accurately 

reproduced by the model. In all cases R2 is higher than 0.98. Although 

the model validation for the simulation of leaf area index for Italian 

varieties cannot be considered exhaustive because of the poor dataset 

available, the modelling efficiency reached a value of 0.68 and the R2 

was equal to 0.70. It is important to underline that, for China, WARM 

performances in validation are better than the calibration ones: 

average values of relative root mean square error, modelling 

efficiency, coefficient of residual mass and R2 for the validation 

datasets are closer to their optimum whereas for Italy the agreement 

in validation is generally only slightly lower, although average values 

of R2 and intercept are better. In some cases, the best values for the 

indices of agreement were calculated for validation datasets (e.g. 

Gaozhai 2001, Tuanlin 1999, Vercelli 1989, Opera 2002). This can be 

considered as an indirect, preliminary proof of the model robustness. 

No patterns in model performances related to the presence of 

floodwater and therefore to the micrometeorological simulation of the 

effect of floodwater on temperatures were noticed. The means of the 

indices of agreement calculated for flooded and unflooded 

experiments resulted always not statistically different. For 

aboveground biomass p(t) ranged between 0.21 and 0.76, obtained 

respectively for R2 and relative root mean square error. For leaf area 

index, the intercept of the linear regression between measured and 

simulated values presented the lowest p(t) (0.37), whereas the highest 

(0.98) was obtained for modelling efficiency. During the validation, the 

model presented the same level of accuracy discussed for the 

calibration data set. 
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3.5 Conclusions3.5 Conclusions3.5 Conclusions3.5 Conclusions    
    
We calibrated and validated the WARM model for rice simulation in 

China and Italy using data from 11 published field experiments, after 

having identified most relevant model parameters with a Monte Carlo 

based sensitivity analysis. Average relative root mean square error 

and R2 are 23.0% and 0.95 for the simulation of aboveground biomass 

and 39.2% and 0.72 for leaf area index. Modelling efficiency is always 

positive and no systematic over- or under-estimations are evidenced. 

Model performances in calibration and validation are very similar and 

the simulation of floodwater effect on temperature did not lead to 

incoherent model behaviors. These results show that the model is 

robust and able to reproduce yield variability within years and 

locations. 

This is the first time a model explicitly accounting for the 

micrometeorological peculiarities of paddy rice is evaluated and, given 

the importance of this biophysical aspect in affecting crop growth and 

development through the smoothing of daily thermal extremes, the 

proposed approach can be considered suitable for investigating the 

interactions between weather and crop productivity in a changing 

climate. The coherence between the WARM needs in terms of input 

requirements and the information stored in the available agro-

meteorological databases makes the model suitable for spatialized 

simulations. This is a crucial pre-requisite, together with the model 

robustness, for carrying out operational rice yield forecasts at 

regional, national and international scales, aiming at managing food 

security problems. 
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4.1 Abstract4.1 Abstract4.1 Abstract4.1 Abstract    
    
A reliable approach for modelling rice plant height would allow the 

simulation of processes with a significant impact on rice yield, e.g., 

lodging, floodwater effect on leaves temperature, crop-weeds 

competition for radiation interception, etc. In this paper we present a 

new model for the simulation of plant height based on the integral of 

the percentage of biomass partitioned to stems. The model was 

compared with four alternative approaches using data collected 

during eight experiments carried out in Russia, Japan and USA 

between 1991 and 2000, proving to be the most accurate in 

reproducing plant height during the whole crop cycle. RRMSE ranged 

between 8.02% and 20.87%, modelling efficiency was always close to 

one and the absolute value of coefficient of residual mass never 

exceeded 0.16. The model demonstrated to be also the most robust and 

the less complex  (according to the Akaike’s Information Criterion) 

among those compared. The model presents a lower level of 

empiricism with respect to the other approaches found in literature, 

deriving plant height from the allocation of biomass to stems, the 

plant organs which play a major role in determining the height of the 

canopy. This makes the model a suitable base for further 

developments aiming at including the effect of management (e.g., 

fluctuating water depth) and environmental factor (e.g., competition 

for radiation interception). Moreover, the low requirements in terms 

of data needs make the model suitable for its inclusion also in 

operational cropping systems models. 
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4.2 Introduction4.2 Introduction4.2 Introduction4.2 Introduction    
    
Traditionally, the most common crop growth models simulate light 

interception assuming two kinds of canopy architecture. The first 

simply represents the canopy as a photosynthetic monolayer. 

Examples of models implementing this approach are CropSyst 

(Stöckle et al., 2003) and the models belonging to the CERES family 

(Jones and Kiniry, 1986). The second category arbitrarily divides the 

canopy in n layers (typically three or five), with n constant for the 

whole crop cycle length. This approach is implemented by the SUCROS 

family of models (Van Keulen et al., 1982). In both cases, plant height 

simulation is not needed and this could be the reason why plant height 

models did not flourished in the last decades. Anyway, some simple 

approaches have been proposed. A simple sigmoidal model for maize 

plant height as a function of final plant height and development stage 

was described by Lizaso et al. (2005). Kotera and Nawata (2007) 

presented a model for rice plant height needing as inputs average daily 

temperature, plant height of the day before, and maximum plant 

height. A very simple and empirical model used by Confalonieri et al. 

(2005) derives rice plant height multiplying leaf area index (LAI) by 15. 

Another approach based on LAI is implemented in the CropSyst model 

(Bechini and Stöckle, 2007). 

Despite the small effort invested by crop modellers for developing 

reliable approaches for plant height simulation, this variable is 

decidedly important in determining plant behavior and yield potential 

(Yang et al., 2006). As an example, plant height is one of the main 

driving variables for modelling yield losses due to lodging (Berry et al., 

2003; Sterling et al., 2003). According to the mechanistic lodging 
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model proposed by Baker et al. (1998), the height of the plant centre of 

gravity (function of plant height) is one of the key variables for 

determining lodging risk, because of its influence on the stem base 

bending moment. The same Authors calculated that lodging risk 

moves from 0.039 to 0.704 in the range of variation of wheat centre of 

gravity height. A reliable simulation of plant height is also important 

for implementing three-dimensional approaches for canopy 

architecture (Pronk et al., 2003), in case of intercropping simulations 

and for modelling crop-weeds interaction, since it is one of the main 

factor influencing the plant capability to compete for light 

interception (Kropff and Van Laar, 1993). Plant height is also crucial 

for modelling the profile of meteorological variables inside the canopy 

(e.g., Uchijima, 1976), and this is particularly important in complex 

micrometeorological environments like those characterizing paddy 

rice. Confalonieri et al. (2005) proposed the TRIS model for the 

simulation of the floodwater effect on vertical thermal profile, 

needing plant height as input. Coupling TRIS with a rice crop model 

simulating plant height would provide the routines involved with 

aboveground biomass (AGB) accumulation with temperatures 

correctly affected by floodwater, increasing the suitability of the 

model in reproducing the real system. The relevance of the 

relationship between floodwater and temperature along the rice 

canopy profile (function of plant height) has been underlined in many 

studies (e.g., Nishiyama, 1995; Dingkuhn et al., 1995). Moreover, 

analysis of field experimental data demonstrated good correlations 

between plant height and productivity: Khomiakov (1989) used plant 

height as an indicator within a crop yield prediction system based on 

simple regression models. The relevance of plant height in cropping 
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systems analysis emerges also from the Russian agro-meteorological 

crop monitoring system: according to their recommendations 

(Methodical recommendations, 1988), plant height should be 

measured 5-10 times during crop growing season. 

The objectives of this study were the development of a robust, process-

based model for the simulation of rice plant height, and its evaluation 

in a comparative study with four alternative models. 

4.4.4.4.3333    Materials and methodsMaterials and methodsMaterials and methodsMaterials and methods    

4.4.4.4.3333.1 Experimental data.1 Experimental data.1 Experimental data.1 Experimental data    

 

Data were collected in eight experiments carried out between 1991 

and 2000 in Russia, Japan, and Texas (US) (Table 4.1).  

Table 4.1. Data sets used for model parameterization and validation. 

 

During the Russian experiments, plant height and phenological stages 

– among other variables – were determined. Plant height was 

measured from the soil surface to the upper leaf edge before heading 

and to the top of the panicle later on. Data were collected within the 

activities of the Russian agro-meteorological crop monitoring system, 

carried out to estimate yields under growing conditions 

representative of the main Russian rice districts, located in the 

Exp. 
no. 

Site Latitude Longitude Year Sowing 
date 

SAM a Reference 

1 Beaumont Texas, USA 29° 57’ N 94° 30’ W 1991 May 2 0.066 Sass et al. (1992) 
2 Slaviansk Russia 45° 17’ N 38° 06’ E 1997 May 7 -0.106  
3 Novoselskoe Russia 44° 47’ N 132° 41’ E 1997 May 11 -0.201  
4 Novoselskoe Russia 44° 47’ N 132° 41’ E 1998 May 13 -0.090  
5 Volnoe Russia 47° 06’ N 47° 36’ E 1999 May 7 -0.642  
6 Slaviansk Russia 45° 17’ N 38° 06’ E 1999 April 28 -0.426  
7 Volnoe Russia 47° 06’ N 47° 36’ E 2000 May 26 -0.718  
8 Hiroshima Japan 34° 50’ N 133° 38’ E 2000 May 8 0.181 Oguro et al. (2001) 
a Synthetic AgroMeteorological indicator (-; Confalonieri et al., 2010): ( ) ( )0/0 ETRainETRainSAM +−= , 

with Rain and ET0 being cumulated rainfall and reference evapotranspiration in the period March 1st – October 31st. 
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regions Krasnodar, Primorsky, and Astrakhan. These districts are 

sited in areas suitable for rice, although temperatures are usually 

lower than in West European districts, and rice fields are often located 

on saline soils. Water availability allows adopting flood irrigation. 

Local, well-adapted varieties were grown, able to assure satisfying 

production levels (around 6 t ha-1), with a cycle length decreasing with 

longitude. Experimental data from Japan and Texas were derived from 

Oguro et al. (2001) and Sass et al. (1992), respectively. The former 

refers to the investigation of the relationships between satellite 

vegetation indices and biophysical rice plant features (e.g., plant 

height, LAI), whereas the latter is about the assessment of the 

influence of management practices on methane emission from paddy 

rice fields. For all the experiments, management practices allowed to 

prevent water and nutrients stresses and to keep the fields weed and 

pest free. ECMWF ERA 40 (European Centre for Medium-Range 

Weather Forecast; http://www.ecmwf.int/) meteorological data were 

used for all the simulations. 

4.4.4.4.3333.2 Models for plant height.2 Models for plant height.2 Models for plant height.2 Models for plant height    

    

Table 4.2 presents the compared approaches for simulating plant 

height. Two out of five (Confalonieri et al., 2005; Bechini and Stöckle, 

2007) need LAI as driving variable, whereas the Lizaso et al. (2005) 

model needs a decimal phenological code. Five out of six models 

require maximum plant height as input parameter. The model 

proposed by Kotera and Nawata (2007) is the only one which calculates 

the daily increase in crop height, therefore needing the state of the 

day before to derive the value of the current day. 
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Table 4.2. Models for the simulation of plant height compared in this study. 

 

The model proposed in this study simulates plant height as the result 

of the competition for assimilates between stems and the other plant 

organs. It needs as input the percentage of AGB partitioned to stems, 

which is available for all the crop models implementing a daily 

partitioning of assimilates, e.g., all the models belonging to the 

SUCROS and CERES families. In case any daily partitioning of 

assimilates is explicitly simulated, like in CropSyst (Stöckle et al., 

2003), the simple approach of the WARM rice model (Confalonieri et 

al., 2009a, b) can be used. According to this approach, the percentage of 

AGB partitioned to leaves (PLEAVES; 0.0-1.0) is calculated using Eq. 1: 

Equation Input variables Parameters Reference 

SSA

PH

H

today

Edayi
STEMS

⋅
=

∑
=

10

max

 

PSTEMS Hmax 

SSA 

This study 

max

max

LAI

HLAI
H

⋅
=  

LAI Hmax 

LAImax 

Bechini and Stöckle (2007) 

( )5.012
max

1 −⋅−+
=

PAe

H
H  

PA Hmax Lizaso et al. (2005) 

15⋅= LAIH  LAI - Confalonieri et al. (2005) 

( )
max

max

H

HHTH
H yy −⋅⋅⋅

=∆
ν

 
Hy 

T 

Hmax 

ν 

Kotera and Nawata (2007) 

H (cm): plant height (state). 
Hmax (cm): maximum plant height. 
Eday (-): emergence day. 
PSTEMS (%): partitioning factor to stems. 
SSA (m2 kg): specific stem area. 
LAI (m2 m-2): leaf area index. 
LAImax (m

2 m-2): maximum leaf area index. 
PA (-): relative phenological age (0: emergence, 1: silking, 2: physiological maturity). 
∆H (cm day-1): rate of plant height increase. 
T (°C): average daily air temperature. 
ν (-): coefficient of the temperature effect on plant height increment. 
Hy (cm): plant height of yesterday. 
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


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PLEAVES   (1) 

where DVS is a development stage code assuming the values of 0.0, 1.0, 

and 2.0 respectively at emergence, flowering, and physiological 

maturity; RipL0 (0.0-1.0) is the AGB partitioned to leaves at 

emergence. Like in SUCROS-derived models, DVS is obtained by 

normalizing the thermal time accumulated before and after flowering. 

The percentage of AGB partitioned to panicles (PPANICLES; 0.00-1.00) 

results from Eq. 2: 









≤<
≤≤−⋅+⋅−

<≤
=

0.25.11

5.16.09.24.59.1

6.000
2

DVS

DVSDVSDVS

DVS

PPANICLES  (2) 

The percentage of AGB partitioned to stems (PSTEMS; 0.00-1.00) is 

derived by subtracting PLEAVES and PPANICLE to one. 

Among the models implementing a daily partitioning, we used WARM 

because of the simplicity of the approach used to simulate the 

processes involved in assimilates allocation to plant organs, driven by 

a single variable (DVS) and a single parameter (RipL0). However, in 

spite of its low complexity, the model proved its reliability under a 

variety of conditions in Europe (e.g., Delmotte et al., 2010) and Asia 

(Confalonieri et al., 2009a), and also in comparative studies with other 

worldwide diffused models (Confalonieri et al., 2009b). WARM is the 

model used by the European Commission for rice yield forecasts in 

Europe, China and India (http://mars.jrc.it/mars/Bulletins-

Publications/MARS-Bulletin-Europe-Rice-bulletin-03-08-2010-Vol.6-

No.1). 
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4.2.3 Models parameterization and evaluation4.2.3 Models parameterization and evaluation4.2.3 Models parameterization and evaluation4.2.3 Models parameterization and evaluation    

    

For all the models, the parameter Hmax was set to 60 cm for the 

datasets collected in Volnoe, 70 cm for those collected in Novoselskoe, 

100 cm for the datasets of Slaviansk and Hiroshima, and 120 cm for 

the Beaumont experiment. The value of ν (Table 2) for the Kotera and 

Nawata model (2007) was set to the value of 0.002, the same used by 

the authors. The Bechini and Stöckle (2007) parameter LAImax was 

set to 7.5 m2 m-2 (Confalonieri et al., 2009a). For the model proposed 

in this study, (see also Eqs. 1 and 2), the value of RipL0 was set to 0.7 

(Confalonieri et al., 2009b), whereas the value for the parameter SSA 

(Table 4.2) was the one provided by Van Diepen et al. (1988). For the 

two models needing LAI as input, the time course of this variable was 

simulated using the WARM model. 

Models were compared by evaluating their accuracy, complexity and 

robustness. Accuracy was evaluated using the Relative Root Mean 

Square Error (RRMSE, %, 0 to +∞, optimum = 0), the Modelling 

Efficiency (EF, -, -∞ to 1, optimum = 1; if negative indicates that the 

average of observations is a better predictor than the model), and the 

Coefficient of Residual Mass (CRM, -, -∞ to +∞, optimum = 0; if positive 

indicates model underestimation and vice versa) (Loague and Green, 

1991). Model complexity and robustness were quantified using the 

Akaike’s Information Criterion (AIC, -, -∞ to +∞, optimum = -∞; Akaike, 

1974) and the Robustness Indicator (IR, -, 0 to +∞, optimum = 0; 

Confalonieri et al., 2010), respectively. AIC and IR are calculated 

according to Eqs. 3 and 4: 

( ) TMSEnAIC ⋅+⋅= 2log       (3) 
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SAM

EF
RI

σ
σ=         (4) 

where n is the number of observed/simulated pairs, MSE is the mean 

square error, T is the number of inputs in the model, σEF and σSAM are 

the population standard deviations of EF and of the synthetic agro-

meteorological indicator (see Table 4.1). 

4.4.4.4.4444    Results and discussionResults and discussionResults and discussionResults and discussion    
    
Figure 4.1 shows that the proposed model (grey circles) was able to 

reliably reproduce the time course of plant height for most of the 

datasets, without systematic patterns related to specific locations, 

years, phenological phases or cultivar size.  
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Figure 4.1. Measured (X-axis) and simulated (Y-axis) plant height values: a. 
Beaumont – 1991; b. Slaviansk – 1997; c. Novoselskoe – 1997; d. Novoselskoe 
– 1998; e. Volnoe – 1999; f. Slaviansk – 1999; g. Volnoe – 2000; h. Hiroshima – 
2000. : model proposed in this study; : Bechini and Stöckle (2007); ▲: 
Lizaso et al. (2005); ×: Confalonieri et al. (2005); ––––: Kotera and Nawata (2007). 

 

A slight overestimation affected model predictions in the last part of 

the cycle for the Slaviansk – 1999 dataset, whereas an opposite 

behaviour can be observed for the data collected in Hiroshima. On the 

contrary, the model proposed by Kotera and Nawata (2007) strongly 

underestimated observations in all the datasets, especially in the 

central part of the cycle (black dashes). In some cases, the accumulated 

gap was partially recovered during the ripening phase. The model from 

Lizaso et al. (2005) demonstrated to be sufficiently accurate in most of 

the situations (white triangles), whereas the other approaches always 

showed a marked underestimating tendency. It is interesting to notice 
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the satisfying behaviour demonstrated by the two models requiring 

less input (variables and parameters), i.e., the Confalonieri et al. (2005) 

and Lizaso et al. (2005) approaches. The accuracy indices (RRMSE, EF, 

CRM) shown in Table 4.3 confirm these considerations.  

Table4.3. Performance statistic values used to compare the five plant height 
models. Greyed areas show the best result per metric. 

 

 

Model Dataset RRMSE (%) a EF b CRM c AIC d IR
 e 

This study Beaumont - 1991 8.02 0.90 0.05 101.89 0.315 
Slaviansk - 1997 18.37 0.71 0.00 
Novoselskoe - 1997 14.40 0.93 -0.08 
Novoselskoe - 1998 11.16 0.96 0.02 
Volnoe - 1999 14.34 0.87 -0.09 
Slaviansk - 1999 20.87 0.70 -0.12 
Volnoe - 2000 11.01 0.93 -0.02 
Hiroshima - 2000 17.60 0.79 0.16 

Bechini and 
Stöckle 
(2003) 

Beaumont - 1991 25.58 -0.02 -0.21 130.45 2.057 
Slaviansk - 1997 41.89 -0.52 0.40 
Novoselskoe - 1997 30.64 0.67 0.28 
Novoselskoe - 1998 39.49 0.49 0.38 
Volnoe - 1999 58.88 -1.15 0.58 
Slaviansk - 1999 37.64 0.02 0.32 
Volnoe - 2000 45.10 -0.24 0.44 
Hiroshima - 2000 12.76 0.89 0.10 

Lizaso et al. 
(2005) 

Beaumont - 1991 26.35 -0.09 -0.22 118.81 1.163 
Slaviansk - 1997 25.03 0.46 0.10 
Novoselskoe - 1997 19.54 0.86 -0.06 
Novoselskoe - 1998 20.81 0.86 0.07 
Volnoe - 1999 22.11 0.70 -0.03 
Slaviansk - 1999 35.47 0.13 0.00 
Volnoe - 2000 37.34 0.15 -0.20 
Hiroshima - 2000 17.14 0.80 -0.07 

Confalonieri 
et al. (2005) 

Beaumont - 1991 23.16 0.16 -0.18 123.43 1.593 
Slaviansk - 1997 41.89 -0.52 0.40 
Novoselskoe - 1997 17.86 0.89 0.14 
Novoselskoe - 1998 20.79 0.86 0.07 
Volnoe - 1999 37.07 0.15 0.37 
Slaviansk - 1999 42.05 -0.23 0.39 
Volnoe - 2000 27.78 0.53 0.16 
Hiroshima - 2000 20.34 0.72 0.19 

Kotera and 
Nawata 
(2007) 

Beaumont - 1991 54.68 -3.68 0.51 170.50 4.254 
Slaviansk - 1997 81.87 -4.80 0.79 
Novoselskoe - 1997 84.77 -1.56 0.76 
Novoselskoe - 1998 90.45 -1.70 0.80 
Volnoe - 1999 59.45 -1.19 0.56 
Slaviansk - 1999 67.62 -2.17 0.66 
Volnoe - 2000 51.44 -0.62 0.50 
Hiroshima - 2000 73.99 -2.71 0.70 

a Relative Root Mean Square Error (%, 0 to +∞, optimum = 0) 
b Modelling Efficiency (-, -∞ to 1, optimum = 1) 
c Coefficient of Residual Mass (-, -∞ to 1, optimum = 0) 
d Akaike’s Information Criterion (the lower the better) 
e Robustness Indicator (-, 0 to +∞, optimum = 0) 
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The model proposed in this study obtained the best values of RRMSE 

(mean RRMSE = 13.87%, ranging from 8.02% to 20.87%) and EF (mean 

EF = 0.86, ranging between 0.70 and 0.96) in seven out of eight datasets 

and the best CRM values in half of them. CRM is negative in half of the 

cases, demonstrating the absence of any over- or underestimating 

behavior. The model from Lizaso et al. (2005) achieved the best CRM 

for the remaining datasets, and was ranked second in four out of eight 

cases according to RRMSE and EF. Despite its simplified formulation, 

the approach from Confalonieri et al. (2005) was ranked second in four 

cases (three Russian datasets and the one from US) according to both 

RRMSE and EF. The approach proposed by Kotera and Nawata (2007) 

was always the worst, with EF values negative for all the datasets. 

The values of the indices of agreement obtained by the proposed 

approach are consistent with those reported for models simulating 

other processes of rice-based cropping systems. Shimono et al. (2005) 

obtained RRMSE values ranging from 9.6% to 33.4% for a rice spikelet 

sterility model. Confalonieri et al. (2006a) calculated average RRMSE 

and CRM values of 62% and 0.03 respectively while simulating soil N-

NH4 and N-NO3 content in rice fields. RRMSE values ranging from 

10.4% to 35.6% and from 22.8% to 59.9% were found by Confalonieri 

et al. (2009a) while simulating rice AGB and LAI, respectively. The 

same authors calculated EF ranging from 0.69 to 0.99 and from 0.12 to 

0.91 for the same variables. RRMSE values ranging between 11% and 

13% were obtained by Bouman and Van Laar (2006) while simulating 

rice yield. 

Although model accuracy is often not correlated with model 

robustness (Confalonieri et al., 2010) and complexity (Confalonieri et 
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al., 2009b), the approach we propose in this paper achieved the best 

scores for both the IR and AIC indices, demonstrating to be the most 

robust and the less complex one. Note that AIC assigns a good score 

(low value) to a model able to guarantee good performances using few 

inputs. Its results should be therefore considered in the light of the 

Occam’s razor. This is why the simplest model in this comparison (H = 

LAI⋅15; Confalonieri et al., 2005) did not achieved the best value for 

AIC. Both IR and AIC ranked as second and third the Lizaso et al. (2005) 

and the Confalonieri et al. (2005) models, respectively. These ranks 

reflect those suggested by the accuracy indices considered. The 

performances of the Bechini and Stöckle (2007) approach were 

probably affected by the uncertainty in the estimation of the 

parameter LAImax, hard to be determined without a deep knowledge of 

the grown cultivars. 

4.4.4.4.5555    ConclusionsConclusionsConclusionsConclusions    
    
Despite plant height is a variable influencing many processes in real 

systems it is difficult to find in the literature reliable process-based 

approaches to model it. During this study we developed a new model 

for rice plant height based on the partitioning of biomass to stems. The 

model proved to be accurate in the explored conditions, reproducing 

correctly the behaviour of plants grown in the eight experiments 

carried out in Russia, Japan and USA between 1991 and 2000. 

Averaging the values obtained in the parameterization and validation 

datasets, we obtained values of 14.47% and 0.85 respectively for 

RRMSE and modelling efficiency. The coefficient of residual mass did 

not identify relevant under- or overestimating behaviours. The 

proposed model demonstrated to be more accurate and robust than the 
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other four models previously compared, and the relationship between 

its performances and the number of inputs required allows 

considering it the most efficient among those. 

Although rice plant height is influenced by genetic and management 

factors (e.g., dwarfing genes, plant density, fluctuating water depth, 

rate and timing of nitrogen supply) for them the proposed model does 

not account for, its level of empiricism is lower with respect to the 

existing approaches. In fact, the idea of simulating plant height as the 

results of the competition for assimilates between stems and the other 

plant organs represents a robust base for further modelling studies 

accounting for other key factors modulating plant height increase. 
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Chapter 5    

Simulating climate change impact on rice Simulating climate change impact on rice Simulating climate change impact on rice Simulating climate change impact on rice 
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5.1 Abstract5.1 Abstract5.1 Abstract5.1 Abstract    
    
Agriculture remains the main engine for economic growth for most 

Sub-Saharan African (SSA) countries, with an added value around 30-

40% of GDP, and serves as the main base for food security in this 

region (World Bank and FAO reports). Despite its economic 

importance, however, the agricultural sector in SSA has performed 

poorly relative to other developing countries. The causes highlighted 

in literature are several, mainly due to poor policies and institutional 

failures, but there is another important factor to consider, the 

particular sensitivity of agricultural production to climatic changes 

(Barris et al., 2008).  

Although general patterns of response are expected as a result of 

climate change scenarios in the coming dekades, several studies have 

shown that climate, agricultural system sustainability and resilience 

to adverse conditions may vary noticeably. It appeared also evident 

that moving from temperate areas (the one usually used to test most 

of the commonly adopted crop models) to conditions characterized by 

extreme thermal regimes the effect of the climate change on crop 

development and growth vary substantially according to the 

implemented patterns of response to temperature. 

As plant development rate is not a linear function of temperature and 

for the simulation of the effect of biotic and abiotic stress a realistic 

simulation of development phases is required a curvilinear response 

characterized by minimum, optimal, and maximum temperature for 

development was implemented on an hourly basis. 
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The main objective of this work is therefore the development of a 

model framework for climate change impact assessment and the 

development of adaptation strategies suitable for environments 

characterized by extreme thermal conditions made even worse in 

climate change scenarios and to compare them with the standard 

version of the model 

5.2 Introduction5.2 Introduction5.2 Introduction5.2 Introduction    
    
Climate and agriculture have an intimate and intricate relationship 

that is continuously subject to change. Crop and climate models are 

abstractions of this real-world complexity, as is the case generally 

with models (Müller, 2011). Quantification of complex crop-climate-

soil interaction is essential for supporting agricultural management 

strategies and policy decisions at multiple scales, from the farm to the 

continent; unfortunately our modelling approaches are not always up 

to the task. Many of our current models do not incorporate the latest 

knowledge about how crops respond to a changing climate and may 

not properly represent modern crop varieties and management 

practices (Rötter et al., 2011). In fact the majority models that are 

applied to assess the potential impacts of anthropogenic climate 

change on crop productivity were developed two decades ago. Though 

they have been recalibrated over time they urgently need to be 

updated to reflect new research in crop physiology, agronomy and soil 

science. For example, more recent field experiments have shown that 

when temperatures go above thresholds of about 30-36°C during 

flowering, rice, but also other staple crop as maize and wheat, 

experience a sharp decline in grain set and yield. A suppressant effect 

of average high temperatures has been found also on biomass 
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accumulation independently from a particular development stage. 

Most process-based models do not account for this, and so tend to 

overestimate future yields in regions experiencing more frequent hot 

days during the growing season, i.e. Sub-Saharan Africa. Especially for 

rice air temperature is one of the major factors affecting production; 

rice plants are cultivated widely from tropical through temperate 

climates nevertheless optimal temperature ranges exist for their 

growth and development (Nishiyama, 1976). 

Observational data show that Africa has been warming through the 

20th century at the rate of about 0.5°C per decade (Hulme et al., 2001). 

Although this trend seems to be consistent over the continent, the 

changes are not always uniform (Malhi and Wright, 2004; Kruger and 

Shongwe, 2004). A comprehensive paper on climate change in Africa 

over the period 1900-2100, Hulme et al. (2001) show that climate 

change is not simply a phenomenon of the future, but one of the 

relatively recent past. Hulme et al. (2001) and IPCC suggest a future 

annual warming across Africa of between 0.2 and 0.5 ºC per decade. 

This translates to a warming of between 2 and 6 ºC by 2100, with the 

greatest warming over the interior semiarid tropical regions. 

As noted above the magnitude of the projected impacts of climate 

change on food crops in Africa varies widely among different studies 

and according to which GCM and/or crop model is used (Challinor et al., 

2007 and Challinor et al., 2009). Climate change projections realized by 

running GCMs (or RCMs) under different emission scenarios are 

intrinsically subject to a significant amount of uncertainty. While 

there is a general consistency in projected temperatures for Africa, 

precipitation projection are generally less consistent with large inter-
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models ranges for seasonal mean rainfall responses. Despite these 

uncertainties estimates of projected future rainfall has been 

undertaken. Multiple model simulations are needed in order to sample 

the inherent uncertainties in the projection of climate and 

agricultural production (Thornton et al., 2011). 

Under different emission scenarios (i.e. A1F1, A2, B1 and B2) using the 

HadCM3 and ECHAM4 GCMs, Thornton et al. (2006) assessed areas of 

Sub- Saharan Africa under current and projected impacts of climate 

variability and change and showed that among other factors, the 

length of the growing period (LGP) was one of the elements that would 

be significantly affected by climate change. 

It appears evident therefore that African agriculture is very 

vulnerable to climate change. Although there are established concerns 

about climate change in Africa, little work has been carried out to 

show how seriously the problem will be in Sub-Saharan Central Africa. 

In fact few studies have been conducted to assess the impact of 

climate change on agriculture in developing countries and to our 

knowledge, a detailed assessment study considering all the involved 

processes has not been undertaken yet. 

The impacts described above in the 4◦C+ world hypothesized by 

Thornton (2011) will require quite radical shifts in agriculture systems 

and this proactive adaptation will require much more concerted effort 

at all levels to manage quite radical shifts. 

The objective of this work, which is part of a research project aimed 

developing a model framework for assessing climate change impact on 
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cropping systems in specific districts of Mali and Burkina Faso, 

examines the effect of short and medium term climate variability and 

the change on rice production in Mali and identifies the adaptation 

options of the system using an integrated simulation analysis. 

5.3 Materials and methods5.3 Materials and methods5.3 Materials and methods5.3 Materials and methods    

5.3.1 Test site5.3.1 Test site5.3.1 Test site5.3.1 Test site    

 

With its 80,000 ha of irrigated land, the Office du Niger is one of the 

largest irrigation schemes of West Africa. It is situated in the Ségou 

region in Mali in the semi-arid western Sahel zone at the Delta Mort of 

the Niger River was set up in 1932 to aid in improving cotton and rice 

production (Fig.5.1).  

 

Figure 5.1. Administrative boundaries of the irrigated perimeter of the Office 
du Niger and representation of the simulation grid. Highlighted the two grids 
referring to the villages where the data were collected. 
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At present, it is of vital importance for national food security in Mali, 

providing approximately 465,000 tons of paddy each year or 40 % of 

the national production. As such, the Office du Niger contributes 

significantly to the self-sufficiency of the country in rice, which is 

currently at about 90 % (Chohin-Kuper et al., 2002). 

The zone of the Office du Niger (14°18’N 5°59’W) has a semi-arid 

climate. Yearly rainfall varies from 300 to 600 mm and is concentrated 

in the months from July to September. Reference evapotranspiration 

amounts to about 2,500 mm a year and exceeds rainfall in all months 

except August (Hendrickx et al., 1986). Yearly rainfall increases from 

north to south in the study area (Boeckx, 2004). Soils are 

predominantly Fluvisols and Vertic Cambisols with a clayey texture 

(Haefele et al., 2003). 

5.3.2 Experim5.3.2 Experim5.3.2 Experim5.3.2 Experimental dataental dataental dataental data    

Agromanagement and yield data 

 

Data were collected in two surveys carried out by the Institute 

d’Economie Rurale (IER) in the villages of Hamdallaye (14°26'18.74"N, 

6° 7'0.82"W) and Tissana (14°13'12.01"N, 5°58'48.01"W) between 1995 

and 1998 and in 2010. As shown in figure 5.1 the two villages are 

located in the central part of the irrigated perimeter and fall into two 

different simulation units. 

During the field surveys, data concerning the main agro-management 

practices and the final yield were determined. Dates of sowing, 

transplanting and harvest were available as well as the adopted 
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variety among the short cycle cultivar BG 90-2 and the long cycle 

cultivar KOGONI 91-1 and the average length of the growing cycle. 

According to the collected data yields vary strongly among the 

different exploitations and from a preliminary analysis the only 

existing significant correlation is between yield and the total amount 

of nitrogen. The spatial variability detected in the older dataset is 

extremely wide counting values between 1.2 t/ha and 6.9 t/ha for BG 

90-2 and between 1.3 t/ha and 7.2n t/ha for KOGONI 91-1 whereas the 

more recent data show less intra-annual differences and vary between 

3 t/ha and 5.3 t/ha during the wet season and between 2.6 t/ha and 4.9 

during the dry season. Although the yields are similar both in 

Hamdallaye and Tissana slightly better conditions were observed in 

the latter village and more in general in the southern part. According 

to the available field data it was possible to define three ideal 

subgroups characterized by theoretical, optimal and suboptimal 

management conditions. The literature reports average potential 

yields between 5 t/ha and 8 t/ha for sub-Saharan varieties with better 

performances during the wet season. However according to the data 

collected in the surveys, under well managed actual condition it is 

possible to expect a yield potential varying between 2.2 t/ha and 4.0 

t/ha during the dry season and between 3 t/ha and 5 t/ha during the 

wet season. Under suboptimal conditions yields are below these ranges 

mentioned above and in some cases close to complete crop failure. 

Meteorological data 

 

Given the sparseness of ground-based observations available, the Era-

Interim (reprocessed in order to get a grid of 25×25 km) dataset from 
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the European Centre for medium-range Weather Forecasting 

(ECMWF) was used both for describing current climate conditions and 

to build future climate scenarios. Meteorological Synoptic weather 

observation datasets were used to assess the performance of the 

estimates. Future scenarios were built using libraries of the LARS-WG 

stochastic weather generator (Racsko et al, 1991; Semenov et al, 1998; 

Semenov & Brooks, 1999). The use of stochastic weather generators 

allows deriving statistically robust weather series from otherwise 

coarse GCM output, i.e., series with temporal and spatial properties for 

use by crop models. Hence we generate a climatic baseline, 

representing the variability of the actual conditions and then 

produced multiple-year climate change scenarios at daily time scales, 

incorporating changes in both mean climate and variability applying 

the “delta method” (Ramirez and Jarvis, 2010). The method, basically, 

produces a smoothed (interpolated) surface of changes in climates 

(deltas or anomalies) and then applies this interpolated surface to the 

baseline climate.  

Rainfall distribution, and other weather variables, where kept 

unchanged. Historical series (1982-2008) were used to generate a 

climatic baseline, as well as climate scenarios (2020 and 2050), using 

the A1B and B1 HADCM3 (Hadley Centre Coupled Model, version 3) 

projections via the delta method mentioned above. The variation of 

CO2 concentration for the considered storylines is calculated 

according to the Bern-CC model (Joos et al., 1999). CO2 abundance is 

set for the baseline at 355 ppm and in 2020 at 418 ppm and 410 ppm 

respectively for the A1B and B1 IPCC storylines, and at 522 ppm and 

482 ppm in 2050. 
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5.3.3 Simulation model5.3.3 Simulation model5.3.3 Simulation model5.3.3 Simulation model    

    

WARM (Confalonieri et al., 2009a,b) simulates rice growth using the 

concept of radiation use efficiency (RUE) proposed by Monteith (1977), 

but compared to the already available rice models, like CERES-Rice 

(Singh et al., 1993a) or ORYZA (Kropff et al., 1994), it takes into 

account some relevant processes influencing the final yield usually 

not considered. In fact WARM simulates rice growth taking into 

account micrometeorological peculiarities of paddy fields, diseases, 

hydrology of paddy soils, temperature-shock induced spikelet sterility 

and reproduces these biophysical processes with a consistent level of 

complexity. 

The effect of temperature on rice production is very divergent and 

complex and in in paddy fields it is strongly influenced by floodwater. 

In WARM the micrometeorological model TRIS proposed by 

Confalonieri et al., (2005) is adopted to take into account the 

floodwater effect on the vertical profile.  

Crop development is based on the thermal time accumulated between 

a base temperature (Tb, ºC) and a cut-off temperature (Tc, ºC), 

optionally modulated by a photoperiodic factor. Base and cut-off 

temperatures can be different for the period sowing-emergence and 

emergence harvest. 

Aboveground biomass rate is calculated on a daily time step as shown 

in eq.1. 

( )LAIk
act eRadRUEAGB ⋅−−⋅⋅⋅= 15.0      (1) 
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where Rad MJ m-2 d-1 is daily global solar radiation (converted to par 

using the 0.5 factor), 1-e-kLAI is the fraction of PAR absorbed by the 

canopy, k is light extinction coefficient, LAI (m2 m-2) is green leaf area 

index (total leaf area index is used to compute the fraction of PAR 

intercepted by the canopy), RUEact (g MJ-1) is actual photosynthetically 

active radiation (PAR=0.5×Rad, MJ m-2 d-1) use efficiency, which varies 

from the unlimited RUEmax according to irradiance level, CO2 

concentration, development stage, diseases, nitrogen concentration 

and thermal limitations.  

A typical biological response to temperature from the base 

temperature (Tb) to the optimal temperature (To) follows a logistic 

curve. The response increases slowly as temperature increases from 

Tb, it then increases in a linear fashion in an intermediate range of 

temperature, and then the rate of increase in the response decreases 

as temperature approaches To, at which the response is maximal. At 

temperatures above To, the response decreases in a nonlinear fashion 

and eventually ceases at Tm (Shaykewich 1995). 

In WARM-Standard the response to temperature was modelled using a 

broken-linear response function (Hammer et al. 1993) with plateau for 

the high temperatures. In fact this function describes the response to 

temperature well in temperate regions where the mean daily 

temperatures fall always in the part of the function between Tb and To. 

However moving to regions characterized by thermal regimes which 

are far from these boundaries, an implementation of a non-linear 

response function capable to capture the thermal limitation to growth 

and development above To is required. 
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The beta function proposed by Yin el al. (2003) was therefore 

implemented in the sub-models for development and biomass 

assimilation. Because plant development rate is not a linear function 

of temperature, averaging the daily maximum and minimum 

temperatures to estimate development will result in error 

(Shaykewich 1995). Thus an accurate modelling approach requires 

consideration of the temperature variation throughout the day. This 

can be done by separating the day into 1-h segments, calculating 

development rates over 24-h periods and summing these rates to 

obtain the appropriate mean daily rate. The hourly generation of daily 

temperatures is done by the CLIMA component  (http://agsys.cra-

cin.it/tools/clima/help/) according to the method proposed by 

Campbell, 1985. The resulting improvement of the model is therefore a 

new version of WARM (WARM-Hourly) simulating the response 

function to temperature according to Yin et al., (2003) on an hourly 

basis. The two response functions are shown in figure 5.2 

 

Figure 5.2. Thermal response functions for simulating crop development and 
growth according to the standard version of WARM (left) and the new WARM-
Hourly implementation (right) 
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5.3.4 Model parameterization and evaluation5.3.4 Model parameterization and evaluation5.3.4 Model parameterization and evaluation5.3.4 Model parameterization and evaluation    

    

Starting from the calibration proposed in Confalonieri et al. (2009a) 

for Chinese conditions, two sets of crop parameters were calibrated 

trying to reproduce the behavior of the two typical varieties grown in 

the Office du Niger: the short cycle cultivar BG 90-2 and the long cycle 

cultivar KOGONI 91-1. The model was then run for each grid cell over 

the whole perimeter of the Office du Niger under current weather 

conditions and future climate scenarios. Results are therefore shown 

as maps in order to present the total spatial variability or as figures 

referring to the two grid cells where field data come from. 

In WARM-Standard the cardinals of temperatures adopted in the 

simulations are 12°C as base temperature, 28°C as optimal and 42°C as 

a cut-off temperature, equal for both varieties. New parameters, with 

a stronger biological meaning, were then used in the new version of 

the response function to temperature. Base temperature and optimal 

temperatures were derived from Dingkhun and Miezan (1995) while 

the maximum temperature was calibrated on the base of the review of 

Nishiyama (1976). The chosen values are 6.7 °C and 40°C respectively 

as base temperature and maximum temperature for both varieties and 

29°C and 31 °C as optimum temperature respectively for BG 90-2 and 

KOGONI 91-1. According to this difference the thermal sum for the 

different development stages differ among the two simulation 

approaches. Concerning nitrogen limitation we’ll define a second set of 

simulations with a decreased radiation use efficiency coefficient –we 

assume a constant suboptimal N availability during the whole crop 

cycle – in order to be able to mimic at least partially the impact on 

states variables 
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In order to describe the actual conditions different management 

options were described on a rule based approach characterized by 

different levels of optimization. In fact one set of options was 

calibrated in order to define potential conditions whereas two 

additional sets of simulations were derived in order to mimic, at least 

partially, the impact on state variables due to suboptimal management 

conditions (i.e. lack of nutrients, poor soils, weeds). In order to do this 

the radiation use efficiency coefficient was reduced with respect to 

the potential conditions. The management options differ by the 

sequence adopted (BG 90-2 + KOGONI 91-1, or twice KOGONI 91-1) and 

by the rule used to simulate the sowing date in the wet season. In one 

option both crops are sown at fixed dates in the other the second crop 

is sown after a certain period after the previous one has reached 

maturity. This rule based approach is meant to be capable to simulate 

the effect of anticipating or postponing the second cycle according to 

changes in crop cycle length due to thermal limitations.  

Due to the lack of complete series (biomass and leaf area index) and 

detailed data the calibration of the system was mainly aimed at 

reaching a plausible representation of the length of the crop cycles 

and of the expected yield using biologically robust parameters. 

Moreover, in order to overcome the limitations due to the insufficient 

information required to capture the entire variability results will be 

shown as absolute values but also as difference of the expected yield 

under the future scenarios and the actual conditions. As a consequence 

of the lack of consistent datasets for biomass and leaf area index, the 

improvement of the WARM-Hourly model with respect to the standard 

version could not be performed adopting the currently used indices 
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and evaluation strategies, proposed e.g. by Loague and Green (1991) or 

more recently by Confalonieri et al. (2009b) but has to be discussed 

using a qualitative and more application-oriented approach. 

5.3.5 Definition of adaptation strategies5.3.5 Definition of adaptation strategies5.3.5 Definition of adaptation strategies5.3.5 Definition of adaptation strategies    

    

Previous research conducted in developing country settings indicates 

that, in principle, climate change impacts on agriculture can be 

reduced through human adaptations such as adjusting sowing dates 

and changing cropping patterns (Winters et al., 1998). Obviously in 

order to define the management strategies capable to offset the 

negative climate change impacts on cropping systems the simulation 

tools adopted to evaluate them needs to be robust in the sense of 

having a strong biological meaning. In fact given that optimizing the 

period of growth so that the crops do not suffer thermal limitations 

appears to be crucial, the shape and parameterization of the functions 

describing the response to temperature determines strongly the 

direction of investigation of the possible adaptation options. This 

means that if the responses function has a biophysical reason it will 

lead to the identification of the best period for growing the crops 

under changing climate. Therefore the second objective is to show the 

different results which were achieved by using a function 

characterized by a plateau for high temperatures and by using the new 

implemented beta function. The first step in defining adaptation 

strategies was to run simulations moving the sowing dates within 

different time windows, hence exploring the best management 

practice. The exercise was done using both variety adopted in the 

current conditions. Sowing dates of both rice cultivars were shifted by 

either bringing forward the first cycle or delaying sowings of the 
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second within the interval (D1-50, D1-40, D1-30, D1-20, D2+20, D2+40, D2+60, D2+80 

days) with respect to the baseline case, D1/2 being the normal sowing 

date and testing the efficiency of both varieties. During the dry season 

simulations were run using only the short cycle variety whereas 

during the wet season both varieties were tested in order to get twelve 

different combinations. However the yield potential of each option 

was evaluated separately for each season given that no effects were 

observed due to the combinations of the two seasons. The adaptation 

strategies explored by moving the sowing date are listed in table 5.1. 

Table 5.1. List of the adaptation strategies explored by moving the sowing 

date of both crop cycles (dry season and wet season. 

 

 

The parameters describing the two crop varieties were the same as in 

the current conditions in order to enhance the effect of the 

management practice in adapting to climate change and reducing the 

impact. 

Considering the extreme temperatures characterizing part of the 

season already under current conditions the strategies which allow 

the crop to complete the most sensitive development stages (i.e. grain 

Variety
sowing date shift 

(dry season)
sowing date shift 

(wet season)

BG 90-2 D1-50 D2+20

BG 90-2 D1-40  D2+40

BG 90-2 D1-30 D2+60

BG 90-2 D1-20 D2+80

KOGONI 91-1 D1-50 D2+20

KOGONI 91-1 D1-40  D2+40

KOGONI 91-1 D1-30 D2+60

KOGONI 91-1 D1-20 D2+80
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filling) during more favorable thermal regimes appear to be the most 

suitable for adapting to climate change. Then, once these strategies, 

capable to reduce the negative effect of the high temperatures on the 

final yield, were identified, they were run under the future scenarios 

in order to evaluate the impact of climate change on this management 

options. 

5.4 Results and discussion5.4 Results and discussion5.4 Results and discussion5.4 Results and discussion    

5.5.5.5.4444.1 .1 .1 .1 Weather conditionsWeather conditionsWeather conditionsWeather conditions    

 

Changes between the actual conditions and the future scenarios were 

evaluated preliminarily via the analysis of difference maps for the 

main driving variables (minimum and maximum temperature, rainfall, 

evapotranspiration) and for some of the most common climatic indices 

(i.e. the aridity index). This allowed quantifying the increase/decrease 

of the variables and analyzing their spatial variability. 

The increase in temperatures, already evident in 2020, becomes 

significant in 2050 mainly for the daily maximum temperature (Table 

5.2) and the spatial variability becomes high especially in the dry 

season. The differences maps on cumulated temperatures, which can 

be considered as a proxy of changes in thermal sums, confirm the 

increased pattern observed for the average values. 
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Table 5.2. Monthly average maximum temperature and standard deviation 

for the baseline and the Hadley A1B 2020 and 2050 scenarios for the villages 

of Hamdallaye and Tissana. 

 

 

Changes in rainfall variability, similar for 2020 and 2050, appear to be 

higher in the dry season between March and May (between -20% and 

+40%) than in the wet month between June and August (between -15% 

and +20%). This means that the interannual variability in the 

beginning of the rainy season will be further enhanced. 

The calculated evapotranspiration values stay close to these 

calculated for the baseline in 2020 whereas in 2050 as a direct 

consequence of the high increase in temperature the 

Average
Standard 
Deviation

Average
Standard 
Deviation

Average
Standard 
Deviation

Hamdallaye Jan 31.3 2.2 32.0 2.0 33.3 2.0

Hamdallaye Feb 34.1 2.7 34.9 2.4 36.0 2.3

Hamdallaye Mar 38.2 2.4 38.6 2.3 40.1 2.3

Hamdallaye Apr 41.1 1.8 41.7 1.6 43.3 1.5

Hamdallaye May 41.5 1.7 42.4 1.5 44.0 1.5

Hamdallaye Jun 40.0 1.8 40.8 1.7 42.8 1.8

Hamdallaye Jul 36.7 2.3 37.2 2.3 38.9 2.4

Hamdallaye Aug 34.4 1.7 34.8 1.7 36.0 1.7

Hamdallaye Sep 36.0 1.9 36.3 1.8 37.8 1.9

Hamdallaye Oct 38.0 1.6 38.8 1.6 40.2 1.6

Hamdallaye Nov 35.5 1.7 36.3 1.7 37.8 1.7
Hamdallaye Dec 32.2 2.1 33.1 1.9 34.5 1.8

Tissana Jan 31.9 2.2 32.6 1.9 33.9 1.9

Tissana Feb 34.9 2.5 35.5 2.2 36.5 2.3

Tissana Mar 38.8 2.2 39.1 2.0 40.4 2.1

Tissana Apr 41.3 1.5 41.8 1.5 43.4 1.5

Tissana May 41.2 1.7 42.1 1.5 43.7 1.6

Tissana Jun 39.6 1.8 40.3 1.9 42.2 1.8

Tissana Jul 36.2 2.2 36.4 2.2 38.1 2.3

Tissana Aug 33.8 1.7 34.4 1.7 35.6 1.7

Tissana Sep 35.2 1.9 35.8 1.9 37.3 1.9

Tissana Oct 37.7 1.6 38.5 1.7 40.0 1.7

Tissana Nov 36.0 1.6 36.8 1.7 38.3 1.6
Tissana Dec 32.9 2.1 33.6 1.9 35.2 1.9

Hadley A1B 2020Baseline Hadley A1B 2050
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evapotranspiration demand seems to rise up to 5%. Nevertheless, 

given that the total precipitation is foreseen to increase, the climatic 

water balance does not seem to worsen in the 2020 and 2050 weather 

scenarios. This has been confirmed by calculating the trend of the 

aridity index which does not show any relevant change in the three 

time windows and the difference between the scenarios and the 

baseline does not show as well any significant worsening (Fig.5.3) 

 

Figure 5.3. Values of calculated the aridity index (AI) for the baseline, the A1B 
2020 and the A1B 2050 during the wet season (June-August). 

 

These results even if they allow some preliminary conclusions about 

plausible changes in climatic conditions, at least of single variables, 

cannot be considered exhaustive for the analysis of the climate change 

impact on cropping systems. It appears evident that the scenarios need 

to be tested against crop simulations including an analysis of a crop-

based water balance and the impact of abiotic stresses (i.e. high daily 

maxima). 
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5.4.2 Models evaluation: climate change impact assessment5.4.2 Models evaluation: climate change impact assessment5.4.2 Models evaluation: climate change impact assessment5.4.2 Models evaluation: climate change impact assessment    

 

The simulation of the crop cycles under current conditions and future 

climate scenarios (2020 and 2050 projections) aimed at analyzing the 

crop behavior in response to climate change. Simulation results are 

presented and discussed as average values at maturity referring to the 

sample cells corresponding to these from which field data were 

collected. Simulations results refer to actual conditions under optimal 

management. 

WARM-Standard showed a relative good accuracy in reproducing the 

actually adopted crop calendar under the current conditions. The 

average yields simulated for Hamdallaye and Tissana in the baseline 

are coherent with the data collected in the field surveys (close to 2.9 

t/ha during the dry season and around 3.3 t/ha in the wet season). 

Relatively to the simulations run under future scenarios the average 

yield reaches in average 3.1 t/ha (dry season) and 3.4 t/ha (wet season) 

in 2020 and among 3.2 t/ha (both for the dry and the wet season) in 

2050. 

The difference maps presented in figure 5.4 confirms that an increase 

in productivity occurs in the dry season in the 2020 scenario and only 

slight losses appear in northern areas during the wet season, whereas 

the situation changes consistently in 2050. In fact in the long term 

scenarios a strong increase in biomass production and yield is depicted 

for the dry season but the losses in the wet season become more 

significant (up to -15% for larger areas). This seems to depend from 

the shortening of the crop growth period. It is caused, according to the 

response function to temperature characterized by a plateau for the 
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high temperatures, by a significant increase in temperatures leading 

to a suboptimal development of the canopy and grain filling. This 

seems to be confirmed by the pattern describing the leaf area 

expansion which decreases progressively from the baseline to the long 

term projections. 

 

Figure 5.4. Percentage difference maps on average values of average final 
yield for the scenarios A1B 2020 and A1B 2050 with respect to the baseline. 
Differences are shown for the dry season and for the wet season. 

Analyzing the simulation results obtained using the broken linear 

function of response to temperature they show pattern of response 

which cannot be considered reliable with respect to the thermal 
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regime. Given that limitation due to high temperatures where not 

taken into account an increase in grain accumulation was depicted in 

2020 for both cycles and for the dry one in 2050. The decrease in 

productivity shown for the second cycle in 2050 is only due to a 

shortening of the vegetative cycle which leads to a decrease of the 

time available for the crop to develop the canopy and perform the 

grain filling. In particular the effects (i.e. decline in yields) expected in 

the temperature increasing 2050 scenario did not emerge as a mayor 

outcome and the response to management strategies was minimal. 

Running the simulation using WARM-Hourly allowed a better 

detection of the different yield potential among the two growing 

periods. The final yield was 2.27 t/ha and 2.47 t/ha for the dry 

respectively for the grid of Hamdallaye and Tissana and 4.37 t/ha and 

4.17 t/ha during the wet season. This difference is not only explained 

by the different yield potential of the varieties but is directly 

dependent from the thermal conditions of the growing cycles.  

The graph shown in figure 5.5 represents the average decadal 

maximum temperatures for the village of Hamdallye for the baseline 

and the Hadley A1B 2020 and 2050 scenario; it is possible to notice 

how already under the current conditions temperature between the 

end of March and the end of June are above the maximum 

temperature for crop growth. Moving to the future scenarios the time 

intervals characterized by thermal regimes above the threshold 

becomes wider. 
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Figure 5.5. Decadal average maximum temperature trend for the baseline, the 
Hadley A1B 2020 and 2050 scenario for the Hamdallaye village. 

Considering that the dry season takes place largely in this period it 

appears evident that the final yield is reduced by these unfavorable 

conditions. The negative effect of the thermal regime is confirmed by 

analyzing the spatial variability of the final yield which shows a north-

south gradient. In fact it is possible to observe that in the northern 

part the threshold of the 40°C is reached later than in the south and 

this allows a better development of the canopy. A more homogeneous 

situation is depicted for the wet season because the thermal regime 

stays below the maximum values of temperature during almost the 

whole growing period. The use of WARM-Hourly depicted completely 

different results in the climate change impact assessment.  

In the 2020 scenario an overall reduction of total biomass (between 5-

10%) was depicted for the dry season, whereas a slight increase (up 

to10%) is observed for the wet season (especially in the southern part 
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of the Office du Niger). The final grain yield appears to be significantly 

more affected by the increase of temperatures therefore reduction 

between 10-25% characterize the dry season and between 0-10% the 

wet one. At the same time a slight increase (>5%) of cumulated 

transpiration values is shown for both seasons as a consequence of the 

prolongation of the first crop cycle due to a delayed development 

because of the high temperatures and as a consequence of the increase 

of biomass in the second cycle.  

In the 2050 scenario the reduction in total biomass and grain becomes 

definitively more significant and in several cases the crop does not 

reach maturity in the given time frame. This is due to the 

temperatures exceeding the threshold already in March at the very 

first stages of crop’s growth, with two-three decades of advance with 

respect to the baseline. The reduction of final yield is stronger (up to -

50%) than the reduction of potential biomass (large areas between -

10% and -25%) and again the effect is stronger during the dry season. 

A detailed description of the results of the simulations, run with 

WARM-Hourly, among the different management options considered 

is presented in table 5.3.  
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Table 5.3. Simulated final yield differences between the baseline and the 

future scenarios for the five management options considered, both for the 

dry and wet season. 

 

It is possible to see that the trend reflects the one described above for 

the most commonly adopted practice (option one) with the exception 

of management option three which represents a non-suitable practice. 

In that case, indeed, the worsening with respect to the baseline occurs 

also for the wet season in 2020 due to the bad timing of the sowing 

activities. This further confirms the capacity of WARM-Hourly to 

catch the effects of the thermal regimes properly. 

5.4.2 Models evaluation: adaptation strategies assessment5.4.2 Models evaluation: adaptation strategies assessment5.4.2 Models evaluation: adaptation strategies assessment5.4.2 Models evaluation: adaptation strategies assessment    

 

The achieved results showed that not only figures related to the 

climate change impact assessment are drastically different if 

simulations are run using WARM-Standard or WARM-Hourly. In fact 

also the adaptation strategies considered suitable to offset the 

negative influence of changing climate change substantially in one 

case or the other.  

Considering WARM-Standard version the effects of higher 

temperature is causing a reduced periods for green canopy 

Yield reduction (%) 

Dry Wet Dry Wet

management 1 -19.14 0.48 -56.8 -21

management 2 -19.14 3.96 -56.8 -21.8

management 3 -18.31 -5.3 -45.8 -17.7

management 4 8.33 -17.5

management 5 3.21 -17.4

A1B 2020 A1B 2050
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development and grain filling therefore these negative conditions 

have to be offset adopting late and/or long-cycle varieties; on the other 

hand, running the simulations with WARM-Hourly the negative 

impact of increasing temperatures, which slow down the crop 

development and reduce biomass accumulation, needs to be overcome 

adopting opposite management options. It is in fact necessary to 

shorten the cycles or advancing the sowing period in order to escape 

the period where temperature are exceeding the maximum threshold 

for plant growth in order to avoid the failure of the crop. 

With respect to the results obtained considering the limitation on crop 

development and biomass accumulation due to high temperatures it 

seems that the adaptation strategies showing a better response to 

future climatic conditions are the ones anticipating the sowings 

during the dry season by 30 days and delaying the same practice by 30-

60 days during the wet season. Simply shifting sowing dates allows 

grown crops to develop under more favorable thermal conditions 

improving the grain filling period and hence the crop grain yield. In all 

cases, due to the delay in development as a consequence of the 

extreme temperatures, the best performances were shown by short 

cycle varieties which are capable to reach high productive levels in 

shorter time. This is especially valid if we consider the first cycle 

which is more sensitive to high temperatures. The losses in final yield 

for the rice grown in the dry season pass from -19.1% to -6.2% in the 

2020 scenario and from -56.8% to -28.4% in the 2050 scenario. On the 

contrary considering the wet season the shift in the sowing dates 

reduced only slightly the expected losses. 
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5.5 Conclusions5.5 Conclusions5.5 Conclusions5.5 Conclusions    
    
Differences in crop yield under each of the scenarios reflect a complex 

interplay between temperature increase, projected changes in 

precipitation change, and increase in atmospheric CO2 concentrations. 

Higher temperatures does not translate always into faster crop 

development and earlier maturation which results into lower crop 

yields because the crop intercepts less cumulative solar radiation 

before it reaches maturity and harvest because above a certain 

threshold the effect on crop growth is opposite determining even 

worse effect on the final yield expectation. In fact if the threshold 

effect is respected in simulating biomass accumulation and crop 

development the impact of climate change on the cropping system 

vary according to the season because grown under different thermal 

regimes. Yield losses during the wet season are limited and in some 

cases it is possible to expect a slight increase whereas the dry season, 

characterized by very high temperatures, will face strong losses 

already in the 2020 scenario. Moving to 2050, the increase in 

temperatures is expected to be so high that even in the wet season the 

final yield will be strongly reduced, and in some cases it is very likely 

that keeping the actual crop calendar crops will not reach maturity in 

time due to the above optimal temperature for growth temperatures. 

The water use increases especially in 2020 scenarios where the crop 

cycle is longer and the canopy expansion satisfactory, on the contrary 

the simulated transpiration values decrease under 2050 scenarios; 

even if the evapotranspirative demand becomes higher the reduced 

leaf expansion causes a decreased water demand. Equally if we 

consider the definition of adaptation strategies’ taking into account 
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the threshold effect or not gives a completely different picture of the 

most suitable options. In fact, as highlighted by impact assessment, it 

is crucial to detect the most suitable time window for growth in order 

to optimize the thermal regime and the results suggested that sowing 

dates may be very effective in mitigating the adverse effects of 

climate change. However how to shift it is completely dependent from 

the effect of the high temperatures on crop development and biomass 

accumulation. 

Finally it appears clear that in regions characterized by extreme 

thermal regimes it is necessary to consider the effect of the high 

temperatures on crop growth already under current conditions, all the 

more if the purpose is the climate change impact assessment and/or 

the definition of adaptation strategies.  

The use of WARM-Hourly simulation model represented an effective 

tool for testing the effect of climatic and technological changes and 

management advances at field level; however the efficiency of system 

was limited by the limited amount of information which could be 

collected. 

As a consequence the modelling exercise could not reproduce 

completely the effect of the most critical limiting factors, forcing to 

make some simplifications, thus reducing the power of the modelling 

tools available. These issues, due mainly to a lack of overall 

information on the system, are not new in studies in contexts like the 

one analyzed, and remain the limiting factor to whatever type of 

analysis can be run. In the frame of further development of other 

actions with similar goals, an improvement is needed in the quantity of 
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available data (e.g. through rigorous field data collection) which could 

enhance the ability to assess the impacts of future climate scenarios 

on cropping systems dynamics. 
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Chapter 6    

ConclusionsConclusionsConclusionsConclusions    
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The future food security conditions in many developing countries will 

be heavily influenced by climate change and variability. While the 

effects of climate change and variability are seriously disruptive for 

crop production, the new technologies, and adaptations to climate 

change and variability may attenuate their negative effects, hence 

helping to preserve food security conditions. It is imperative to 

perform an integrated assessment of climate change impacts on these 

countries.  

This research examined the effects of short and medium-term climate 

variability and changes on rice production in Mali and identified the 

adaptation options of the systems using an integrated modelling 

framework. 

The study shows that most crop yields are likely to be different in the 

future under the effects of increased atmospheric CO2 and the 

resulting climatic changes, as expressed by the four future climate 

scenarios. For the future climates, crop yields are projected to increase 

in some case in the near future but to decrease decidedly in the 

midterm. 

The differences in crop yield under each of the scenarios reflect a 

complex interplay between temperature increase, projected changes 

in precipitation change, and increase in atmospheric CO2 

concentrations. Higher temperatures translate into faster crop 

development and earlier maturation which results in lower crop yields 

because the crop intercepts less cumulative solar radiation before it 

reaches maturity and harvest (Young et al., 2000, Brassard and Singh, 

2007). This relationship is confirmed by the results presented in 
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chapter 5. Growing periods are shorter under A1B scenarios than 

under B1. This is because the projected temperatures under B1 

scenarios were moderate, so less change in development period 

occurred as the climate changed. The increased rainfall in the 

scenarios is able to accommodate the increasing growth due to 

enhanced photosynthesis that occurred under elevated CO2 

conditions. Using regression analysis, Rosenzweig (1993) found that 

daily maximum temperatures >30ºC during the growing season were 

negatively correlated with maize yield in the US Maize Belt. The 

future climate scenarios used had maximum daily temperatures >30 °C 

on several days during the growing season. 

Even if the positive effects of elevated CO2 concentrations on biomass 

production and grain yield are higher at increased temperatures for 

C3 species, our results indicate that the negative effect of increased 

temperatures on development will not be sufficiently counterbalanced 

by the fertilizer effect of higher CO2 concentrations. Climate change 

will also have complex interactions with the timing and severity of 

diseases, pests and weeds (Fuhrer, 2003), but their combined effects on 

the yields presented here were assumed to be controlled. 

In order to cope most of the processes involved this research also 

focused on the development of an integrated framework that could aid 

impact assessment, policy analysis and decision making in the 

agriculture sector.  

The use of the BioMA-BECRA crop growth simulation platform 

represented an effective tool for testing the effect of climatic and 

technological changes and management advances at field level; 
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however the efficiency of system was limited by the limited amount of 

information which could be collected. In fact, one point that must be 

addressed about this study is the difficulty in establishing an effective 

cooperation with local stakeholders at every level, to provide the 

needed information to be used to set the conditions for the simulation 

study. As a consequence the modelling exercise could not reproduce 

completely the effect of the most critical limiting factors, forcing to 

make some simplifications, thus reducing the power of the modelling 

tools available. These issues, due mainly to a lack of overall 

information on the system, are not new in studies in contexts like the 

one analyzed, and remain the limiting factor to whatever type of 

analysis can be run. Despite the lack in accuracy several indicatives 

results were obtained and, even more important, tools and knowledge, 

that could be used to produce analysis having a more concrete set of 

inputs, were developed and deployed to local researches, during a 

dedicated training. 

In the frame of further development of this research or of other 

actions with similar goals, an improvement is needed in the quantity of 

available data (e.g. through rigorous field data collection) which could 

enhance the ability to assess the impacts of future climate scenarios 

on cropping systems dynamics. 
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